期刊文献+

基于支持向量机的星载SAR信号识别技术研究 被引量:5

A Study on Space-borne SAR Signal Recognition Technology Based on Support Vector Machine
下载PDF
导出
摘要 针对星载合成孔径雷达(SAR)信号的电子对抗侦察识别问题,提出了一种基于支持向量机的星载SAR信号分类方法。该方法基于样本聚集性构建二叉树结构,解决了支持向量机的多分类问题;同时减小了二叉树结构的分类误差积累,选择高斯核函数解决样本的非线性问题,并采用遗传算法对模型参数进行优化,从而提高模型的分类性能。文中对加拿大的Radarsat-2星载SAR卫星的四种信号进行了分类仿真,并与传统的参数匹配法进行了比较,结果表明文中的方法具有较好的识别率,同时模型的泛化能力也比较强,有利于解决对星载SAR的侦察难点问题。 To solve the problem of electronic countermeasure reconnaissance and identification for space-borne synthetic aperture ra- dar(SAR}signals,a space-borne SAR signal classification method based on support vector machine is proposed.This method builds a binary tree(BT)structure based on the sample clustering,solves the multi-classification problem-of support vector machine,and reduces the accumulation of classification errors of the binary tree structure.Gaussian kernel functions are used to solve nonlinear problems of samples,and genetic algorithm is used to optimize model parameters,thereby improving the classification performance of the model In this paper,the four kinds signals of Radarsat-2 space-borne SAR satellite from Canada are classified and simulated,and compared with the traditional parameter matching method.The results show that the method in this paper has a good recognition rate,and the generalization ability of the model is also stronger,so it is helpful to solve the difficulty of reconnais- sance on space-borne SAR.
作者 王哲涛 宋小全 WANG Zhetao;SONG Xiaoquan(Beijing Institute of Tracking and Telecommunication Technology,Beijing 100094,China)
出处 《现代雷达》 CSCD 北大核心 2018年第11期31-36,共6页 Modern Radar
关键词 星载合成孔径雷达 支持向量机 二叉树 多分类 遗传算法 space-borne synthetic aperture radar support vector machine binary tree multi-classification genetic algorithm
  • 相关文献

参考文献2

二级参考文献19

  • 1陈行勇,黎湘,郭桂蓉,姜斌.微进动弹道导弹目标雷达特征提取[J].电子与信息学报,2006,28(4):643-646. 被引量:61
  • 2Zhong Heping, Zhang Sen, Tang Jinsong. Path following al- gorithm for phase unwrapping based on priority queue and quantized quality map [ C]//2009 International Conference on Computational Intelligence and Software Engineering. [ S. 1. ] : IEEE Press, 2009 : 1-4.
  • 3Xu W, Cumming I. A region-growing algorithm for InSAR phase unwrapping [ J ]. IEEE Transactions on Geoscience and Remote Sensor, 1999,37 ( 1 ) : 124-134.
  • 4Pritt M D, Shipman J S. Least-square two-dimensional phase unwrapping using FFT's [J].IEEE Transactions on Geoscience and Remote Sensor, 1994,32(3) : 706-708.
  • 5王正勇,朱挺,何小海,等.一种残差点退化的四最小二乘InSAR相位解缠算法[J].四川大学学报:工乖科学版,2010,42(1):185-190.
  • 6Jacobs S P. Automatic target recognition using sequences ofhigh resolution radar range-profiles [ J ]. IEEE Transactionson AES,2000,36(2) :364-381.
  • 7Andrew M S,John M,Dietz Cl Bob,et al. Counter measures-A technical evaluation of the operational effectiveness of theplanned US national missile defense system[ R]. CambridgeMA: Union of Concerned Science, 2000.
  • 8Vapnik V. Statistical learning theory[ M]. New York:Spring-er Verlag,1998.
  • 9Ulrich K. Pairwise classification and support vector machines[C]// Advances in Kernel Methods Support vector Learn-ing. Cambridge,MA : MIT Press,1998 : 255-268.
  • 10Takahashi F,Abe S . Decision - tree - based multiclass supportvector machines [ C ]// Proceedings of the 9th InternationalJoint Conference on Networks. Singapore : IEEE Press, 2002(3): 1418-1422.

共引文献9

同被引文献54

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部