期刊文献+

温度对质子交换膜尺寸稳定性的影响 被引量:1

Effect of Temperature on Dimensional Stability of Proton Exchange Membrane
下载PDF
导出
摘要 以双酚A型聚砜为基质材料,首先通过Friedel-Crafts反应制备氯乙酰基化聚砜,记为APS,紧接着与羟乙基磺酸钠(HES)反应制备侧链型磺化聚砜(APS-ES)。在用红外光谱和核磁氢谱充分表征的基础上,采用流延成膜法制备相应的质子交换膜(PEM),研究了PEM的吸水率和尺寸稳定性,重点研究了温度对PEM的吸水溶胀性的影响规律。研究结果表明:由于亲水基团远离疏水主链,该PEM能够形成明显的微相分离结构,使得该PEM在高的吸水率下仍能够保持较好的尺寸稳定性,25℃下,该PEM吸水率为24.9%,但是相应的吸水溶胀率仅为11.4%。 Chloroacetylchloride polysulfone (APS)was prepared by Friedel-Crafts reaction with bisphenol A type polysulfone as matrix material,and then a kind of side chain type sulfonated polysulfone(APS-ES)was obtained through the reaction between APS and hydroxyehyl sulfonate sodium.Their chemical structures were confirmed by FT-IR and H-NMR.spectrum.Then the corresponding proton exchange membranes were fabricated by solution casting method,and the water uptaking and size stability of the proton exchange membrane were studied,especially the effect of temperature on swelling property of proton exchange membrane.The experiment results show that the PEM has the micro-phase structure due to the hydrophilic area far away from hydropholic area.The PEMs keep excellent size stability at high wateruptaking,the swelling ratio is only 11.4%when the wateruptaking is 24.9%at 25℃.
作者 乔宗文 孟龙 QIAO Zong-wen;MENG Long(Department of Chemical Engineering,Shaanxi Institute of Technology,Shaanxi Xi'an 710000,China)
出处 《当代化工》 CAS 2018年第11期2352-2355,共4页 Contemporary Chemical Industry
基金 陕西省教育厅自然科学专项(18JK0069) 陕西国防工业职业技术学院校本项目(GYZ1712)
关键词 聚砜 Friedel—Crafts酰基化 相分离 羟乙基磺酸钠 尺寸稳定性 polysulfone Friedel-crafts acylation phase separation hydroxyehyl sulfonate sodium size stability
  • 相关文献

参考文献8

二级参考文献60

  • 1李辰楠,孙公权,任素贞,吴智谋,刘瑾,辛勤.应用于燃料电池的全氟磺酸膜及其改性[J].科学通报,2005,50(19):2049-2054. 被引量:7
  • 2王国芝,李明威,胡继文.燃料电池用质子交换膜的研究进展[J].高分子通报,2006(6):24-31. 被引量:10
  • 3J. Lobato, P. Canizares, M. A. Rodrigo, F. J. Pinar. Three-dimensionalmodel of a 50 cm2 high temperature PEM fuel cell: Study of the flowchannel geometry influence[J]. INT J HYDROGEN ENERG,2010(35):5510-5520.
  • 4J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, M. Litt.Acid-dopedpolybenzimidazoles: a new polymer electrolyte[J]. Electrochem.1995(142): 1211.
  • 5D, Cheddie, N. Munroe. Parametric model of an intermediatetemperature PEMFC[J]. J POWER SOURCES, 2006(156):414^23.
  • 6K. Scott, S. Pilditch, M. Mamlouk, Modelling and experimentalvalidation of a high temperature polymer electrolyte fuel cell[J], JAppl Electrochem, 2007(37):1245-1259.
  • 7J. W. Hu, H.M.Zhang, G Liu. Diusion-convection/electrochemicalmodel studies on polybenzimidazole (PBI) fuel cell based on ACimpedance technique[J].Energy Conversion and Management,2008(49):1019-1027.
  • 8D. Cheddie, N. Munroe. Modeling of High Temperature PEM FuelCells using FEMLAB[J].J POWER SOURCES’ 2006(160):215-223.
  • 9J. W. Hu, H. M. Zhang, J. Hu, Y. F. Zhai, B. L. Yi. Two dimensionalmodeling study of PBI/H3PO4 high temperature PEMFCs based onelectrochemical methods[J].J POWERSOURCES,2006(160):1026-1034.
  • 10D. Cheddie, N. Munroe. Three-dimensional modeling of hightemperature PEM fuel cells[J]. J POWER SOURCES,2006(160):215-223.

共引文献36

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部