期刊文献+

一种求解热电联供经济调度问题的双种群混合智能优化算法 被引量:1

A Dual Population Hybrid Intelligent Optimization Algorithm for Combined Heat and Power Economic Dispatch
原文传递
导出
摘要 随着电力系统中热电联供所占比重的越来越多,热电联供经济调度问题的解决迫在眉睫。本文针对热电联供经济调度问题的特点,结合粒子群算法(PSO)和差分进化算法(DE)的各自优势,设计了一种双种群混合智能优化算法,该算法在一个种群中采用PSO算法产生新个体并进行更新迭代操作,在另一个种群中采用DE算法产生新个体并进行更新迭代操作,通过对每次迭代过程中两个种群产生的最优个体进行信息交流,协调维持了整个种群的多样性,使得算法在最优解寻找过程中的性能得到提升。对两个热电联供测试系统的仿真实验表明,相比于其他进化算法,本文提出的混合差分进化与粒子群优化算法(DEPSO)在热电联供经济调度问题中可以得到更好的结果。 With the increasing proportion of the combined heat and power in power system,it is urgent to solve the problem of combined heat and power economic dispatch.A dual-population swarm intelligent optimization algorithm -hybrid difference evolution and particle swarm optimization algorithm (DEPSO)is proposed to solve economic dispatch of combined heat and power system.In the algorithm,the population is divided into two sub-populations.One subpopulation adopts PSO algorithm to generate new individuals and update iteration operation.The other population produces new individuals and iterative update the operation through difference evolution (DE)algorithm.These two sub-populations share their information through exchanging the best individual on each iteration process.The two combined heat and power testing systems are simulated to verify the effectiveness of the proposed algorithm in the cogeneration economic dispatch system.The results show that compared to other evolutionary algorithms,the proposed hybrid differential evolution algorithm and particle swarm optimization (DEPSO)algorithm can get better solutions to the cogeneration economic dispatch problem.
作者 吴亚丽 李磊 WU Ya-li;LI Lei(School of Automation and Information Engineering,Xi'an University of Technology,Xi'an 710048,China;Shanxi Provincial Key Laboratory of Complex System Control and Intelligent Information Processing,Xi'an 710048,China)
出处 《系统工程》 CSSCI 北大核心 2018年第5期128-138,共11页 Systems Engineering
基金 国家自然科学基金青年基金项目(61503299 61502385)
关键词 热电联供 经济调度 优化算法 混合粒子群与差分进化算法 Cogeneration Economic Dispatch Optimization Algorithm Differential Evolution Particle Swarm Optimization Algorithm
  • 相关文献

参考文献2

二级参考文献27

  • 1Eberharl R, Kennedy J. A new optimizer using particle swarm theory [ A ]. Proceedings of the International Symposium on Micro Machine and Human Science [ C ]. Piscataway, N J, USA: IEEE, 1995. 39-43.
  • 2Kennedy J, Eberhart R. Particle swarm optimization [ A ]. Proceedings of the IEEE International Conference on Neural Networks [C]. Piscataway, NJ, USA: IEEE, 1995. 1942-1948.
  • 3Kennedy J, Eberhart R, Shi Y. Swarm Intelligence [ M ]. San Francisco, USA: Morgan Kaufmann Publishers, 2001.
  • 4Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34 (2) : 997 - 1006.
  • 5Li L L, Wang L, Liu L H. An effective hybrid PSOSA strategy for optimization and its application to parameter estimation [ J ]. Applied Mathematics and Computation, 2006, 179 ( 1 ) : 135-146.
  • 6Ye B, Zhu C Z, Guo C X, et al. Generating extended fuzzy basis function networks using hybrid algorithm [ A]. Proceedings of the 2nd International Conference on Fuzzy Systems and Knowledge Discovery [ C]. Berlin, Germany: Springer-Verlag, 2006. 79- 88.
  • 7Price K V. Differential evolution: A fast and simple numerical optimizer [ A]. Proceedings of the 1996 Biennial Conference of the North American Fuzzy Information Processing Society [ C ].Piscataway, NJ, USA: IEEE, 1996. 524-527.
  • 8Shi Y, Eberhart R. A modified particle swarm optimizer [ A ]. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation [C]. Piscataway, NJ, USA: IEEE, 1998. 69 - 73.
  • 9Store R. On the usage of differential evolution for function optimi- zation [ A]. Proceedings of the Biennial Conference of the North American Fuzzy Information Processing Society [ C]. Piscataway, NJ, USA: IEEE. 1996. 519-523.
  • 10Shi Y, Eberhart R. Empirical study of particle swarm optimization [ A ]. Proceedings of the 1999 Congress on Evolutionary Computation [C]. Piscataway, NJ, USA: IEEE, 1999. 1945- 1950.

共引文献70

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部