期刊文献+

在权化的完备度量空间上解Divide&Conquer算法

The Solution of the Alogrithm of Divide & Conquor Using Weighted Complete Metric Spaces
原文传递
导出
摘要 每一个弱权化的度量空间可以序嵌入到一个度量空间的形式球中,并且这种嵌入是拓扑连续的。本文证明权化的完备度量空间上的收缩的弱Lipschitz函数的一个不动点定理,此不动点定理可以用来解Divide&Conquer算法。 A weak weghted metric space is able to be order-embedded into the formal balls of a metric space,and this embedding is topologically continuous.The paper shows that a weak contractive Lipschitz function on a weighted complete metric space has some fixpoints,which can be applied to solve the alogrithm of Divide&Conquer.
作者 黄梦桥 龙环 马昌社 HUANG Meng-qiao;LONG Huan;MA Chang-she(Hunan International Economics University,Changsha410205,China;Basics in Department of Computer,Shanghai Jiaotong University,Shanghai200240,China;School of Computer,South China Normal University,Guangzhou510631,China)
出处 《模糊系统与数学》 北大核心 2018年第5期113-120,共8页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(61672243)
关键词 偏度量 弱Lipschitz函数 Divide&Conquer算法 Partial Metric Weak Lipschitz Function Alogrithm of Divide&Conquer
  • 相关文献

参考文献2

二级参考文献30

  • 1陈仪香,尹艳.两种含可信度的推理[J].模糊系统与数学,2005,19(3):6-13. 被引量:4
  • 2Edalat A,Heckmann R.A computational model for metric space[J].Theoretical Computer Science,1998,193:53~73.
  • 3Heckmann R.Approximation of metric spaces by partial metric spaces[J].Applied Categorical Structures,1999,7:71~83.
  • 4Matthews S G.Partial metric topology[C]// Proceedings of the 8th Summer Conference on Topology and Its Applications,1992,728:176 ~ 185.
  • 5Matthews S G.An extensional treatment of lazy data flow deadlock[J].Theoretical Computer Science,1995,151:195~205.
  • 6O'Neill S J.Two topologies are better than one[Z].University of Warwick,1995.
  • 7Smyth M B.The constructive maximal point space and partial metrizability[J].Annals of Pure and Applied Logic,2006,137:360~379.
  • 8Schellekens M P.A characterization of partial metrizability:Domains are quantifiable[J].Theoretical Computer Science,2003,305:409~432.
  • 9Schellekens M P.The correspondence between partial metrics and semivaluations[J].Theoretical Computer Science,2004,315:135~149.
  • 10Valero O.On Banach fixed point theorems for partial metric spaces[J].Applied General Topology,2005,6(2):229~240.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部