摘要
每一个弱权化的度量空间可以序嵌入到一个度量空间的形式球中,并且这种嵌入是拓扑连续的。本文证明权化的完备度量空间上的收缩的弱Lipschitz函数的一个不动点定理,此不动点定理可以用来解Divide&Conquer算法。
A weak weghted metric space is able to be order-embedded into the formal balls of a metric space,and this embedding is topologically continuous.The paper shows that a weak contractive Lipschitz function on a weighted complete metric space has some fixpoints,which can be applied to solve the alogrithm of Divide&Conquer.
作者
黄梦桥
龙环
马昌社
HUANG Meng-qiao;LONG Huan;MA Chang-she(Hunan International Economics University,Changsha410205,China;Basics in Department of Computer,Shanghai Jiaotong University,Shanghai200240,China;School of Computer,South China Normal University,Guangzhou510631,China)
出处
《模糊系统与数学》
北大核心
2018年第5期113-120,共8页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(61672243)