期刊文献+

基于有限差分法的埋置结构OEPCB散热分析及优化 被引量:5

Thermal Analysis and Optimization of the Buried OEPCB Based on the Finite Difference Method
下载PDF
导出
摘要 针对在传统印刷电路板(PCB)中埋置光波导结构而引发的集热问题,开展埋置结构光电印制板(OEPCB)的散热分析研究与优化。首先构造埋置结构OEPCB的导热模型,然后采用有限差分方法求解传热方程,最后利用FloTHERM软件进行仿真分析与优化。结果表明,在使用目前常用材料的情况下,光波导埋置结构OEPCB的温度场分布并不均匀,极易导致PCB板层的热应力差,进而对结构造成破坏。通过优化光波导芯层、外层导热材料的导热率,可有效降低OEPCB层间温度场梯度,保证光波导埋置结构植入后结构的热稳定性。仿真结果显示,经优化后,现有温度场最高温度处的温度下降22.40%,其他处亦有下降。 Aiming at the heat collecting problem caused by embedding the optical waveguide structure in the traditional printed circuit board( PCB),the thermal analysis and optimization of the opticalelectronic printed circuit board( OEPCB) with the buried structure were carried out. Firstly,the heat conduction model of the OEPCB with the buried structure was constructed. Then the finite difference method was used to solve the heat transfer equation. Finally,the FloTHERM software was used for the simulation analysis and optimization. The results show that the temperature field distribution of the OEPCB with optical waveguide embedded structure is not uniform using the commonly used materials,which can easily lead to the thermal stress difference of the PCB layers and then damage the structure. By optimizing the thermal conductivity of the thermal conductive materials of the core and the outer layer,the temperature field gradient between the OEPCB layers were reduced,and the thermal stability of the structure after implanting the optical waveguide embedded structure was ensured. The simulation results show that after the optimization,the highest temperature of the existing temperature field drops by22. 40%,and other position also decrease.
作者 来新泉 张赟 刘晨 张凌飞 Lai Xinquan;Zhang Yun;Liu Chen;Zhang Lingfei(Institute of Electronic CAD,Xidian University,Xi'an 710071,China;School of Computer,Qinghai Normal University,Xining 810008,China)
出处 《半导体技术》 CAS CSCD 北大核心 2018年第12期949-955,共7页 Semiconductor Technology
基金 国家自然科学基金资助项目(61771363) 国防基础预研项目(JCKY2016210B009) 青海省重点研发与转化计划项目(2018-NN-151)
关键词 埋置结构 光电印制板(OEPCB) 有限差分方法 温度场 散热分析 buried structure optical-electronic printed circuit board (OEPCB) finite difference method temperature field thermal analysis
  • 相关文献

参考文献5

二级参考文献46

  • 1李琴,朱敏波,刘海东,张现亮.电子设备热分析技术及软件应用[J].计算机辅助工程,2005,14(2):50-52. 被引量:32
  • 2J. Shin, Ch. S. Seo, A. Chellappa, M. Brooke, A. Chat- terjee, and N. M. Jokerst, in Proceedings of IEEE 2003 Electronic Components and Technology Conference 1067 (2003).
  • 3H. Cho, P. Kapur, and K. C. Saraswat, J. Lightwave Technol. 22, 2021 (2004).
  • 4L. Dellmann, C. Berger, R. Beyeler, R. Dangel, M. Gmiir, R. Hamelin, F. Horst, T. Lamprecht, N. Meier, T. Morf, S. Oggioni, M. Spreafico, R. Stevens, and B. J. Offrein, in Proceedings of IEEE 2007 Electronic Components and Technology Conference 1288 (2007).
  • 5K. B. Yoon, I. K. Cho, S. H. Ahn, M. Y. Jeong, D. J. Lee, Y. U. Heo, B. S. Rho, H. H. Park, and B. H. Rhee, J. Lightwave Technol. 22, 2119 (2004).
  • 6S. H. Hwang, M. H. Cho, S. K. Kang, T. W. Lee, H. H. Park, and B. S. Rho, IEEE Photon. Technol. Lett. 19, 411 (2007).
  • 7M. Schneider and T. Kuhner, in Proceedings of IEEE 2008 Electronic Components and Technology Conference 276 (2008).
  • 8K. Schmieder and K. J. Wolter, in Proceedings of IEEE 2000 Electronic Components and Technology Conference 749 (2000).
  • 9D. M. Kuchta, Y. H. Kwark, C. Schuster, C. Baks, C Haymes, J. Schaub, P. Pepeljugoski, L. Shah, R. John D. Kucharski, D. Rogers, M. Ritter, J. Jewell, L. A Graham, K. SchrSdinger, A. Schild, and H. M. Rein, J Lightwave Technol. 22, 2200 (2004).
  • 10F. Luo, M. Cao, X. Zhou, J. Xu, Z. Luo, J. Yuan, and K. Yh, Proc. SPIE 5644, 821 (2004).

共引文献41

同被引文献44

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部