期刊文献+

基于有限差分扩展卡尔曼粒子滤波的多特征自适应融合的目标跟踪算法研究 被引量:2

Object tracking based on finite-difference extended kalman Filter and multi-feature adaptive fusion
原文传递
导出
摘要 针对复杂环境下目标跟踪问题,提出了一种基于有限差分扩展卡尔曼粒子滤波的多特征自适应融合跟踪算法。采用有限差分扩展卡尔曼滤波器对采样粒子集合进行滤波更新,通过融入最新观测信息的方法消弱权值退化现象;在新算法的框架内,利用目标静态和动态互补特征作为观测量,实现不同环境下目标的多特征自适应融合跟踪。实验结果表明,本文方法具有较好的跟踪精度和抗噪声干扰能力。 In order to meet the demand of high accuracy and strong robustness of vehicle tracking in the intelligent transportation system,a new adaptive multi-feature fusion tracking algorithm is proposed in this paper.The proposed algorithm overcomes the particle degeneration phenomenon well by using finite difference extended Kalman filter to produce optimization proposal distribution function.An adaptive multi-feature fusion method is proposed to overcome the defects of the additive fusion and the multiplicative fusion.The new method uses static and dynamic characteristics as complementary observables in the framework of the improved particle filter.Experimental results show that this method is effective in enhancing the accuracy and robustness of vehicle tracking system in different environments.
作者 汪超 吴迪 WANG Chao;WU Di(College of Electrical and Information Engineering ,Hunan Institute of Engineering,Xiangtan 411104,China)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2018年第12期1342-1349,共8页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61263031 61563030) 湖省省自然科学基金(16JJ2040 16JJ6025) 湖南省教育厅项目(14k029 15A044 16K024 17A048)资助项目
关键词 目标跟踪 多特征融合 有限差分 粒子滤波 object tracking multi-feature fusion finite-difference particle filter
  • 相关文献

参考文献7

二级参考文献96

  • 1戴树贵,陈文兰.一个求解k短路径实用算法[J].计算机工程与应用,2005,41(36):63-65. 被引量:20
  • 2简林莎,段宗涛,周兴社.智能运输系统信息平台[J].长安大学学报(自然科学版),2006,26(2):81-83. 被引量:8
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 4常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 5钟小品,薛建儒,郑南宁,平林江.基于融合策略自适应的多线索跟踪方法[J].电子与信息学报,2007,29(5):1017-1022. 被引量:21
  • 6Comaniciu D, Ramesh V, and Meer P. Real-time tracking of non-rigid objects using mean shift[C]. Computer Vision and Pattern Recognition. Hilton Head, SC, USA: IEEE Computer Society, June 2000: 142-149.
  • 7Katja N, Esther K M, and Luc V G. An adaptive color-based filter[J], hnage Vision Computing, 2003, 21(1): 99-110.
  • 8Shah Cai-feng, Wei Yu-cheng, Tan Tie-niu, and Ojardias F. Real time hand tracking by combining particle filtering and mean-shift[C}. Sixth IEEE International Conference on Automatic Face and Gesture Recogniton. Seoul, Korea: IEEE Computer Society, 2004, 669-674.
  • 9Wang Zhao-wen, Yang Xiao-kang, and Xu Yi, et al.. Camshift guided particle filter for visual tracking[C]. IEEE Workshop on Signal Processing Systems, Shanghai, China, 2007: 301-306.
  • 10Maggio E and Cavallaro A. Hybrid particle filter and mean shift tracker with adaptive transition model. Acoustics, Speech, and Signal Processing, Pennsylvania Convention Center/Marriott Hotel Philadelphia, PA, USA 2005: II-221-224.

共引文献117

同被引文献24

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部