期刊文献+

智慧城轨下智慧车辆装备技术的研究与展望 被引量:17

Study and Prospect of Equipment Technology for Smart Rolling Stock in Smart Urban Rail Transit System
下载PDF
导出
摘要 介绍了智慧车辆在智慧城轨中的定位,从车辆角度描述了城轨自动化系统构成的关联关系图;指出了车载设备研究的重点方向,并提出车辆智能运维系统和车辆安全保障系统的功能和实现设想;认为这2个系统均应包含车载部分和地面部分,并与城轨智慧云系统驳接;通过分析车辆与智慧城轨其他系统的联动,梳理了车辆应具备的对外接口需求。 Based on the analysis of the roles of smart rolling stock in smart urban rail transit system,architecture relationship diagrams were depicted from the view of the rolling stock side;The important study aspects about onboard equipment were pointed out,the functions as well as the realization conceives of rolling stock operation and maintenance system and safeguard system were proposed;These two systems should include onboard part and ground part were indispensable and were to be merged into the smart urban rail transit cloud system.By analyzing the interaction between the rolling stock and the rest of smart urban rail transit system, the interface requirement on the rolling stock side was sorted out.
作者 路向阳 李东林 李雷 廖云 文峥 吕宇 韩琛 LU Xiangyang;LI Donglin;LI Lei;LIAO Yun;WEN Zheng;LYU Yu;HAN Chen(CRRC Zhuzhou Institute Co.,Ltd.,Zhuzhou,Hunan 412001,China)
出处 《机车电传动》 北大核心 2018年第6期1-8,共8页 Electric Drive for Locomotives
关键词 智慧城轨 智慧车辆 装备技术 智能运维系统 安全保障系统 smart urban rail transit smart rolling stock equipment technology intelligent operation and maintenance system safeguard system
  • 相关文献

参考文献3

二级参考文献21

  • 1MAIR C,FARAROOY S. Practice and Potential of Com- puter Vision for Railways[C]//Proceedings of IEE Semi- nar Condition Monitoring for Rail Transport Systems. London, UK: IEE Press,1998:l-3.
  • 2OHTA M. Level Crossings Obstacle Detection System U-sing Stereo Cameras[J]. Quarterly Report of RTRI (Rail- way Technical Research Institute), 2005,46 (2) : 110-117.
  • 3SEHCHAN O, SUNGHUK P, CHANGMU L. Vision Based Platform Monitoring System for Railway Station Safety[C]//Proeeedings of 2007 7th International Confer- ence on ITS Telecommunications. New York: ITS Press, 2007: 172-176.
  • 4XUE J, CHENG J, WANG L, et al. Visual Monitoring- based Railway Grade Crossing Surveillance System[C] // Proceedings of 1st International Congress on Image and Sig- nal Processing(CISP 2008). New York: IEEE Press,2008 : 427-431.
  • 5JAIN A K, DUIN R P W, MAO J. Statistical Pattern Recognition: A review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
  • 6CHAPELLE O, HAFFNER P, VAPNIK V N. Support Vector Machines for Histogram-based Image Classification [J]. IEEE Transactions on Neural Networks, 1999, 10 (5) : 1055-1064.
  • 7HAICANG L, SHUTAO L. Decision Fusion of SparseRepresentation and Support Vector Machine for SAR Im- age Target Recognition[J]. Neurocomputing, 2013, 113 (1) :97-104.
  • 8WEN C C, DING M J. A Self-constructing Cascade Clas- sifier with Adaboost and SVM for Pedestrian Detection[J].Engineering Applications of Artificial Intelligence, 2013, 26(3) : 1016-1028.
  • 9MING K H. Visual Pattern Recognition by Moment In- variants[J]. IRE Transactions on Information Theory, 1962, 8(2): 179-187.
  • 10MEUTER M, IURGEL U, PARK S B, et al. The Un- scented Kalman Filter for Pedestrian Tracking from a Moving Host [C]// Proceedings of IEEE Ieternational Coference on Intelligent Vehicles Symposium (IVS2008). New York:IEEE Press,2008 : 37-42.

共引文献64

同被引文献108

引证文献17

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部