期刊文献+

一种基于分块主成分分析的存储器容错方法研究

A Fault-Tolerant Method Based on Modular Principal Component Analysis for Memory
下载PDF
导出
摘要 随着集成电路工艺水平提升,半导体器件尺寸越来越小,存储器更易受到周围环境的影响而导致数据存储故障。针对这一问题,该文提出了一种基于分块主成分分析的存储器容错方法。该方法应用分块主成分分析算法提取数据的主要特征,并对求取的特征数据作均值化处理,得到原始数据的最佳近似估计。该最佳近似估计可对数据中的任意故障做容错替换,使容错替换后的数据和原始数据的误差最小。实验结果表明,该方法可以使图片数据在0.003 5错误率的情况下仍保持峰值信噪比大于30 dB;与传统纠错码相比,执行时间缩短了约40%,内存消耗减少了约12%,获得了较好的容错效果。 With the improvement of integrated circuit manufacturing technology,the size of electronic components is shrinking accordingly.And that makes the memory components more susceptible to working environment.To solve this problem,this paper presents a memory fault tolerance method based on modular principal component analysis (PCA).Main features of the data were obtained via modular PCA firstly.Then, the feature data is averaged to obtain the best available estimate of the original data.This best available estimate can be used to make fault-tolerant replacements for any faults in the data,minimizing the sum of the squared errors of the fault-tolerant replaced data and the original data.Finally,using the reconstructed block data,fault-tolerant replacement of the erroneous data in the original data block can be performed.The experimental results show that the picture data can keep a peak signal to noise ratio of more than 30dB under 0.0035error rate.In comparison with conventional error correcting code approach,the execution time can be reduced about 40%,and the memory occupancy can be reduced about 12%.
作者 方嘉言 邵翠萍 李慧云 FANG Jiayan;SHAO Cuiping;LI Huiyun(Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China;Xidian University,Xi'an 710071,China)
出处 《集成技术》 2018年第6期49-59,共11页 Journal of Integration Technology
基金 国家自然科学基金项目(61267002 41271362) 深圳市科技基金资助项目(JCYJ20160510154531467) 深圳市自动驾驶感知决策与控制工程实验室(Y7D0041001)
关键词 容错 主成分分析 分块主成分分析 fault tolerance principal component analysis modular principal component analysis
  • 相关文献

参考文献5

二级参考文献33

  • 1李世玉.管壳式换热器管板设计中若干重要参数的确定[J].压力容器,1994,11(4):31-35. 被引量:2
  • 2华锡尧.带中心管兼作法兰的管板的简化计算[J].化工生产与技术,1995,2(4):38-40. 被引量:1
  • 3国防科学工业技术委员会.GJB3180-98军用计算机容错要求与测评[s],1998.
  • 4Kanoun K, Kaaniche M, Beounes C, et al. Reliability Growth of Fault-tolerant Software[J]. IEEE Transactions on Reliability, 1993, 42(2) :205 - 218.
  • 5Randell B. System Structure for Software Fault Tolerance [J]. IEEE Transactions on Software Engineering, 1975 (SE 1) :220 - 232.
  • 6Avizienis A, Chen L. On The Implementation of N Version Programming for Software Fault-Tolerance During Program Execution:proceedings of the 1977 International Conference on Computer Software and Application[C], 1977 : 149 - 155.
  • 7Glavac V. A VHDL Code Generator for Reed-Solomon Encoders and Decoders[D]. Quebec, Canada: Concordia University, 2003.
  • 8Sarwate D V, Shanbhag N R. High-speed Architectures for Reed-Solomon Decodes[J]. IEEE Trans. on VLSI Systems, 2001, 9(5): 641-655.
  • 9Marcus B H, Siegel P H, Wolf J K. Finite-state Modulation Codes for Data Storage[J]. IEEE Journal on Selected Areas in Communications, 1992, 10(1): 5-37.
  • 10Peek J B H. Communications Aspects of the Compact Disk Digital Audio System[J]. IEEE Commun. Mag., 1985, 23(1): 7-15.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部