期刊文献+

低信噪比下高可懂度语音增强算法 被引量:2

High Intelligibility Speech-Enhancement Algorithm Under Low SNR Condition
下载PDF
导出
摘要 提出了低信噪比下高可懂度的基于分段信噪比相对均方根(RMS)的语音增强子空间算法.现有的多数语音增强算法在低信噪比的恶劣条件下,改善带噪语音质量的同时通常会伴有语音可懂度的降低.一个重要原因是这些算法大都仅基于最小均方误差(MMSE)来抑制语音失真,却忽略了语音增强算法所导致的语音失真对差异类型语音分段的可懂度影响程度不同.为了改进这一缺点,提出了基于短时信噪比RMS对语音分段进行分类,然后调整处于信噪比中均方根语音分段的增益矩阵分量,来减小语音失真对增强语音可懂度的影响.客观评价实验说明,改进算法可以改善增强语音可懂度归一化协方差评价法(NCM)的评测值.主观试听实验说明,改进算法的确提升了增强后语音的可懂度. A higher intelligibility subspace speech-enhancement algorithm based on the relative Root Mean Square (RMS) of speech segmental Signal-to-Noise Ratio (SNR)with low SNR is proposed.Under harsh conditions of low SNR,an improvement of noisy speech quality based on the majority existing speech-enhancement algorithms is often accompanied by a decrease in speech intelligibility.One important reason is that these algorithms only use Minimum Mean Square Error (MMSE)to constrain speech distortions but ignore that speech distortions caused by speech enhancement algorithms have different intelligibility influences on different speech segments.In order to overcome this disadvantage, the RMS of short-time segmental SNR was used to classify speech segments.Then the gain matrix components of middlelevel RMS segments were modified to reduce the influence of speech distortion on enhanced speech intelligibility. Objective evaluation shows that the improved algorithm can improve enhanced speech intelligibility Normalized Covariance Metric (NCM)evaluation values.Subjective audition shows that the proposed algorithm does improve the enhanced speech intelligibility.
作者 刘鹏 LIU Peng(Department of Information Engineering and Automation,Shanxi Institute of Technology,Yangquan 045000,China)
出处 《计算机系统应用》 2018年第12期187-191,共5页 Computer Systems & Applications
关键词 子空间 语音可懂度 语音分段 均方根 增益矩阵 客观评价 主观试听 subspace speech intelligibility speech segment root-mean-square gain matrix objective evaluation subjective audition
  • 相关文献

参考文献4

二级参考文献40

  • 1张华,陈静,王硕,王靓,郭连生,赵小燕,姬晨,陈雪清.汉语普通话语句测听句表的编辑与评估[J].中华耳鼻咽喉头颈外科杂志,2005,40(10):774-778. 被引量:29
  • 2张华,王硕,王靓,陈静,岳朋朋,郭连生,赵小燕.普通话言语测听材料的数字化录制与等价性分析[J].临床耳鼻咽喉科杂志,2006,20(22):1011-1015. 被引量:23
  • 3陈国明,赵力,邹采荣.窄带噪声下的子空间语音增强算法[J].应用科学学报,2007,25(3):243-246. 被引量:5
  • 4Ephraim Y, van Trees H L. A Signal Subspace Approach for Speech Enhancement[J]. IEEE Trans. on Speech and Audio Processing, 1995, 3(4): 251-266.
  • 5Johnsotn J D. Transform Coding of Audio Signals Using Perceptual Noise Criteria[J]. IEEE Journal on Selected Areas in Communications, 1998, 6(2): 314-323.
  • 6Jia Hairong, Zhang Xueying, Jin Chensheng. A Modified Speech Enhancement Algorithm Based on the Subspace[C]//Proceedings of the 2nd IEEE International Symposium on Knowledge Acquisition and Modeling. [S. l.]: IEEE Press, 2009: 344-347.
  • 7You Chang Huai, Koh S N, Rahardja S. Masking-based β -order MMSE Speech Enhancement[J]. Speech Communication, 2006, 48(1): 57-70.
  • 8EPHRAIM Y,TREES H L V.A signal subspace approach for speech enhancement[J].IEEE Trans on Speech and Audio Processing,1995,3(7):251-261.
  • 9DENDRINOS M,BAKAMIDIS S,GARAYANNIS G.Speech enhancement from noise:a regenerative approach[J].Speech Communication,1991,10(2):45-57.
  • 10JENSEN S H,HANSENN P C,HANSEN S D,SORENSEN J A.Reduction of broad-band noise in speech by truncated qsvd[J].IEEE Trans on Speech Audio Processing,1995,3(6):439-448.

共引文献17

同被引文献6

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部