期刊文献+

Hierarchy structure characteristics analysis for the China Loess watersheds based on gully node calibration 被引量:3

Hierarchy structure characteristics analysis for the China Loess watersheds based on gully node calibration
下载PDF
导出
摘要 A land surface region can be decomposed into a series of watershed units with a hierarchical organizational structure. For loess landform, the watershed is a basic spatial–structural unit that can express natural landforms, surface morphology characteristics, spatial organization and developmental evolution. In this research we adopted the concept of node calibration in the watershed structure unit, selected six complete watersheds on China Loess Plateau as the research areas to study the quantitative characteristics of the hierarchical structure in terms of watershed geomorphology based on digital elevation model(DEM) data, and then built a watershed hierarchical structure model that relies on gully structure feature points. We calculated the quantitative indices, such as elevation, flow accumulation and hypsometric integral and found there are remarkably closer linear correlation between flow accumulation and elevation with increasing gully order, and the same variation tendency of hypsometric integral also presented. The results showed that the characteristics of spatial structure become more stable, and the intensity of spatial aggregation gradually enhances with increasing gully order. In summary, from the view of gully node calibration, the China Loess watershed structure shows more significantly complex, and the developmental situation variation of the loess landforms also exhibited a fairly stable status with gully order increasing. So, the loess watershed structure and its changes constructed the complex system of the loess landform, and it has the great significance for studying the spatial pattern and evolution law of the watershed geomorphology. A land surface region can be decomposed into a series of watershed units with a hierarchical organizational structure. For loess landform, the watershed is a basic spatial–structural unit that can express natural landforms, surface morphology characteristics, spatial organization and developmental evolution. In this research we adopted the concept of node calibration in the watershed structure unit, selected six complete watersheds on China Loess Plateau as the research areas to study the quantitative characteristics of the hierarchical structure in terms of watershed geomorphology based on digital elevation model(DEM) data, and then built a watershed hierarchical structure model that relies on gully structure feature points. We calculated the quantitative indices, such as elevation, flow accumulation and hypsometric integral and found there are remarkably closer linear correlation between flow accumulation and elevation with increasing gully order, and the same variation tendency of hypsometric integral also presented. The results showed that the characteristics of spatial structure become more stable, and the intensity of spatial aggregation gradually enhances with increasing gully order. In summary, from the view of gully node calibration, the China Loess watershed structure shows more significantly complex, and the developmental situation variation of the loess landforms also exhibited a fairly stable status with gully order increasing. So, the loess watershed structure and its changes constructed the complex system of the loess landform, and it has the great significance for studying the spatial pattern and evolution law of the watershed geomorphology.
出处 《Journal of Mountain Science》 SCIE CSCD 2018年第12期2637-2650,共14页 山地科学学报(英文)
基金 supported by the auspices of the National Natural Science Foundation of China (Grant Nos. 41471331, 41601408, 41506111)
关键词 Digital ELEVATION models Flow accumulation GULLY structure feature point Hypsometric integral LOESS LANDFORM NODE CALIBRATION Digital elevation models Flow accumulation Gully structure feature point Hypsometric integral Loess landform Node calibration
  • 相关文献

参考文献7

二级参考文献65

共引文献132

同被引文献91

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部