期刊文献+

Multicast-enabled high-speed VCSEL technology for flexible data center networks 被引量:1

Multicast-enabled high-speed VCSEL technology for flexible data center networks
原文传递
导出
摘要 We experimentally demonstrate the multiple signal modulation on a single class 10 G vertical cavity surface emitting laser(VCSEL) carrier at 1 310 nm for next generation multicast-enabled data center networks. A 10 Gbit/s data signal is directly modulated onto a single mode VCSEL carrier. To maximize carrier spectral efficiency, a 2 GHz reference frequency(RF) clock tone is simultaneously modulated on the VCSEL phase attribute. The inherent VCSEL orthogonal polarization bistability with changing bias current is further exploited in transmission of a polarization based pulse per second(PPS) timing clock signal. Therefore, we simultaneously transmit a 10 Gbit/s directly modulated data, 2 GHz phase modulated RF and a polarization-based PPS clock signals using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time that a single class 10 G VCSEL carrier is reported to transmit a directly modulated data, phase modulated RF clock and polarization based PPS timing signal simultaneously in a single wavelength. A of G.652 single mode fibre(SMF) transmission over 3.21 km is experimentally attained. A receiver sensitivity of-15.60 dBm is experimentally obtained for the directly modulated 10 Gbit/s data signal. A 3.21-km-long SMF transmission introduces a penalty of 0.23 dB to the data signal. The contribution of a 2 GHz phase modulated RF and a polarization-based PPS clock signal to this penalty is found to be 0.03 dB. An RF single-side band(SSB) phase noise values of -82.36 dBc/Hz and -77.97 dBc/Hz are attained without and with simultaneous directly modulated data and polarization-based PPS clock signals respectively for a 3.21-km-long SMF transmission. This work provides an alternative efficient and cost effective technique for simultaneous high-speed multiple information transmission to different network nodes within a data center network through shared network infrastructure. We experimentally demonstrate the multiple signal modulation on a single class 10 G vertical cavity surface emitting laser(VCSEL) carrier at 1 310 nm for next generation multicast-enabled data center networks. A 10 Gbit/s data signal is directly modulated onto a single mode VCSEL carrier. To maximize carrier spectral efficiency, a 2 GHz reference frequency(RF) clock tone is simultaneously modulated on the VCSEL phase attribute. The inherent VCSEL orthogonal polarization bistability with changing bias current is further exploited in transmission of a polarization based pulse per second(PPS) timing clock signal. Therefore, we simultaneously transmit a 10 Gbit/s directly modulated data, 2 GHz phase modulated RF and a polarization-based PPS clock signals using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time that a single class 10 G VCSEL carrier is reported to transmit a directly modulated data, phase modulated RF clock and polarization based PPS timing signal simultaneously in a single wavelength. A of G.652 single mode fibre(SMF) transmission over 3.21 km is experimentally attained. A receiver sensitivity of-15.60 dBm is experimentally obtained for the directly modulated 10 Gbit/s data signal. A 3.21-km-long SMF transmission introduces a penalty of 0.23 dB to the data signal. The contribution of a 2 GHz phase modulated RF and a polarization-based PPS clock signal to this penalty is found to be 0.03 dB. An RF single-side band(SSB) phase noise values of -82.36 dBc/Hz and -77.97 dBc/Hz are attained without and with simultaneous directly modulated data and polarization-based PPS clock signals respectively for a 3.21-km-long SMF transmission. This work provides an alternative efficient and cost effective technique for simultaneous high-speed multiple information transmission to different network nodes within a data center network through shared network infrastructure.
出处 《Optoelectronics Letters》 EI 2018年第6期438-441,共4页 光电子快报(英文版)
  • 相关文献

同被引文献10

引证文献1

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部