期刊文献+

基于差分相位再调制与时延干涉检测的WDM-PON辅助管理和控制通道实现方法

Realization of auxiliary management and control channel in WDM-PON based on DBPSK re-modulation and delay interferometer detection
下载PDF
导出
摘要 波分复用无源光网络(wavelength-division multiplexed passive optical network,WDM-PON)中,操作管理和维护数据路径与用户数据路径在传输汇聚层是彼此独立的。操作管理和维护数据可以通过透传和码传两种方式进行发送。其中,透传方式由于无需额外的转码器件以及具有低时延等特性被广泛应用于各种行业网络。不同于现有的透传模式,即基带再调制和射频通道,提出了一种新型的基于差分相位再调制与时延干涉检测的辅助管理和控制通道实现方法。所提方法的辅助管理和控制信号以相位参数再调制于用户信号之上,而用户信号采用传统强度调制,因此辅助管理和控制信号的再调制过程将不会对用户信号质量产生影响。相对地,基带再调制和射频通道都会对用户信号造成扰动,这在抖动要求较高的行业网内是不允许的。所提方法被认为是波分复用无源光网络中一种有效的辅助管理和控制通道的实现方法。 In WDM-PON,the OAM data path and user data path were independent in the TC layer.The OAM data could be transmitted either transparently or by codec.Specifically,the transparent mode was preferred by the industry network due to the free of codec and low latency.Different from the existing transparent modes,such as base-band re-modulation and RF band,a novel method for the realization of auxiliary management and control channel was proposed,which was based on the DBPSK re-modulation and delay interferometer detection.Since the OAM data was re-modulated on the phase of user data,which was modulated intensively,it would not take any impact on the quality of user data.But,in both base-band re-modulation and RF band methods,the re-modulation of OAM data would introduce interference to the user data,which was not allowed in the demanding industry network.The proposed method is thought promising as one of the solutions for auxiliary management and control channel in WDM-PON.
作者 罗滨 刘涌 陆继钊 巩锐 杨宏宇 袁秋实 LUO Bin;LIU Yong;LU Jizhao;GONG Rui;YANG Hongyu;YUAN Qiushi(HAEPC Information &Telecommunication Company,Zhengzhou 450052,China;Shanghai Proinvent Info Teeh Co.,Ltd.,Shanghai 200240,China)
出处 《电信科学》 2018年第11期175-180,共6页 Telecommunications Science
  • 相关文献

参考文献3

二级参考文献48

  • 1Cisco Visual networking index: update, 2013-2018. http://www. global mobile data traffic forecast utions/collateral/ service-provider / visual-networking-index-vni / white paper_cl 1- 520862.html, 2014.
  • 2Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 2014, 52(2): 122-130.
  • 3Boccardi F, Heath R W, Lozano A, et ol. Five disruptive technology directions for 5G. 1EEE Communications Magazine, 2014, 52(2): 74-80.
  • 4Kishiyama Y, Benjebbour A, Nakamura T, et ol. Future steps of LTE-A: evolution towards integration of local area and wide area systems. IEEE Wireless Communications, 2013, 20(1): 12-18.
  • 5Rost P, Bemardos C J, Domenico A D, et ol. Cloud technologies for flexible 5G radio access networks. IEEE Communications Magazine, 2014, 52(5): 68-76.
  • 6Demestichas P, Georgakopoulos A, Karvounas D, et ol. 5G on the horizon: key challenges for the radio access network. IEEE Communications Magazine, 2013, 8(3): 47-53.
  • 7Osserian A, Boccardi F, Braun V, et al. Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Communications Magazine, 2014, 52(5): 26-35.
  • 8Bangerter B, Talwar S, Arefi R, et al. Networks and devices in 5G era. IEEE Communications Magazine, 2014, 52(5): 90-96.
  • 9Shuminoski T, Janevski T. Radio network aggregation for 5G mobile terminals in heterogeneous wireless networks. Proceedings of the llth International Telecommunication in Modern Satellite, Cable and Broadcasting Services, Serbia, 2013.
  • 105G愿景与需求白皮书.http://210.56.209.74/zh/documents/list/1,2014.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部