期刊文献+

黑腔中等离子体相互作用的流体力学现象观测 被引量:1

Observation of hydrodynamic phenomena of plasma interaction in hohlraums
下载PDF
导出
摘要 激光间接驱动惯性约束聚变实验中,黑腔内情况复杂,在激光烧蚀和辐射烧蚀等的驱动下,光斑区、冕区、纯辐射烧蚀区、射流区的多种等离子体以不同规律运动.发展了X光双能段窄能带的时间分辨成像方法,用以观测黑腔内多种等离子体的运动情况.在真空黑腔中观测到清晰的射流,分析了射流产生机制及其速度;在黑腔中充气,能有效消除射流和抑制冕区等离子体运动,但两种物质界面处可能会出现流体力学不稳定性等现象,分析了界面处的压力平衡关系和密度陡变情况. In indirect-drive inertial confinement fusion(ICF), laser beams are injected into a high-Z hohlraum and the laser energy is converted into intense X-ray radiation, which ablates a capsule located in the center of the hohlraum, and thus making it implode. To achieve high implosion efficiency, it is required that the hohlraum inner wall plasma movement,which will block further laser injection through the laser entrance hole(LEH), be suppressed. Evolution of hohlraum radiation nonuniformity caused by the plasma movement will result in implosion asymmetry which will prevent the ignition from happening. Therefore it is very important to study the hydrodynamic movement of high-Z plasma in ICF experiment.In ICF hohlraum, various plasmas of laser spots, corona, radiation ablation and jets move in different ways driven by laser ablation and X-ray radiation ablation, which is hard to observe and study. An X-ray dual spectral band time-resolved imaging method is developed to clearly observe the motion of various plasmas in hohlraum. Based on the time-resolved X-ray framing camera, using the typical gold plasma emission spectrum, the gold microstrip MCP response spectrum, and the 1.5 μm Al or 3 μm Ti filter transmittance spectrum, the two narrow-band X-ray peaks at 0.8 keV and 2.5 keV are highlighted. The 0.8 keV X-ray shows the Planck spectrum of gold plasma, and 2.5 keV X-ray indicates the M-band of gold plasma.In the vacuum hohlraum, jets are observed clearly, which are verified to be 4 times the sound speed experimentally.The generation mechanism of gold plasma jets in the ICF hohlraum is mainly due to collision rather than magnetic field, because it is estimated that thermal pressure is much bigger than magnetic pressure. In the gas-filled hohlraum,low-Z C5H12 gas can effectively eliminate high-Z gold jets and suppress the high-Z gold coronal plasma movement. The interface between the low-Z and high-Z substance is observed clearly, and gold plasma is accumulated obviously in the later period at the interface. Moreover, spike and filamentous structure occur at the interface between the two substances,which is probably caused by the hydrodynamic instability. The 0.8 keV rather than 2.5 keV X-ray is observed around inner wall, which originates from the low-temperature plasma driven by radiation ablation and is predicted by simulation code. Furthermore, the pressure balance between the two substances and the density steepness at the interface are also analyzed.
作者 黎航 杨冬 李三伟 况龙钰 李丽灵 袁铮 张海鹰 于瑞珍 杨志文 陈韬 曹柱荣 蒲昱东 缪文勇 王峰 杨家敏 江少恩 丁永坤 胡广月 郑坚 Li Hang;Yang Dong;Li San-Wei;Kuang Long-Yu;Li Li-Ling;Yuan Zheng;Zhang Hai-Ying;Yu Rui-Zhen;Yang Zhi-Wen;Chen Tao;Cao Zhu-Rong;Pu Yu-Dong;Miao Wen-Yong;Wang Feng;Yang Jia-Min;Jiang Shao-En;Ding Yong-Kun;Hu Guang-Yue;Zheng Jian(Laser Fusion Research Center,Chinese Academy of Engineering Physics,Mianyang 621900,China;Basic Plasma Key Laboratory of Chinese Academy of Sciences,University of Science and Technology of China Hefei 230026,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2018年第23期170-175,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11435011,11775204,11505170,11405160,11305160)资助的课题.
关键词 黑腔 等离子体 流体力学现象 X光双能段窄能带 hohlraum,plasma,hydrodynamic phenomena,X-ray dual spectral band
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部