摘要
在量子信息理论中,纠缠态作为一种极其重要的资源已经渗透到量子计算的各个方面.其中一个相当重要的研究课题就是探测给定量子态的纠缠性.2010年,Gao Ting等人提出了一个判断多体量子态全可分的基于置换算子的不等式判据.将上述判据推广到了无限维多体复合量子系统情形,给出了无限维复合多体量子态全可分的一个算子不等式判据.
In quantum information theory,quantum entangled state is one of the most important resources,which has been applied to all fields of quantum comptitation.One of-the extremely important research topic is to detect the entanglement of quantum states.In 2010, Gao Ting etc.proposed an inequality criterioil,which is based on permutation operators,for detecting the entangleraeni of multipartite quantum'states.In this paper,we generalized above the inequality criterion to infinite dimensional multipartite quahtum systems.An operator inequality criterion is obtainea for states in infinite dimensional multipartite quantum systems.
作者
王银珠
王旦霞
WANG Yin-zhu;WANG Dan-xia(Department of Mathematics,Taiyuan University of Science and TechnologY,Taiyuan 030024,China;School of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《数学的实践与认识》
北大核心
2018年第23期227-232,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(11501401)
山西省自然科学基金(2015011003,2015011006)
关键词
无限维系统
BOCHNER积分
量子态
算子不等式判据
infinite dimensional systems
bochner integral
quantum states
operator inequality criterion