期刊文献+

联合脆弱模型在含有终止事件的复发事件数据分析中的应用 被引量:2

Application of Joint Frailty Model for Analysis of Recurrent Event Data with Terminal Event
下载PDF
导出
摘要 目的探讨联合脆弱模型在含有终止事件的临床复发事件数据分析中的应用及R软件的实现。方法收集肺癌患者复发数据(多次住院),构建联合脆弱模型,拟采用最大惩罚似然估计(MPnLE)进行模型的参数估计,并评估肺癌患者个体内多次复发间的相关性以及复发事件与终止事件(死亡)间的相关性。结果联合脆弱模型分别评估了协变量对疾病复发进程与死亡进程的效应,同时也考虑了多次复发与死亡的相关性,结果解释合理,软件实现方便。结论联合脆弱模型可以充分挖掘含终止事件的肺癌患者复发数据所蕴含的信息,也可用于其他肿瘤患者预后因素的分析,为临床诊断和治疗提供统计学支持。 Objective To explore the application of joint frailty model in the analysis of clinical recurrent event data with a terminal event.Methods The recurrence data of lung cancer patients was collected to establish joint frailty model.Parameters were estimated by using maximum penalized likelihood estimation(MPnLE),and the correlation of intra-subjects as well as the correlation between recurrent event and terminal event(death)was evaluated.Results Joint frailty model respectively evaluated the effects of covariates on the process of recurrent event and death,also consider the correlation between recurrent event and terminal event.The interpretation of results is reasonable and software implementation is convenient.Conclusion Joint frailty models could fully extract the information contained in the recurrence data of lung cancer patients with terminal event and can also be used for the analysis of prognostic factors in other cancer patients,providing statistical support for clinical diagnosis and treatment.
作者 于智凯 郭强 罗天娥 赵晋芳 段燕 Yu Zhikai;Guo Qiang;Luo Tian'e(Shanxi Medical University(030001),Taiyuan)
出处 《中国卫生统计》 CSCD 北大核心 2018年第6期825-830,共6页 Chinese Journal of Health Statistics
基金 国家青年科学基金项目(81001294).
关键词 联合脆弱模型 复发事件数据 最大惩罚似然估计 终止事件 Joint frailty model Recurrent event data Maximum penalized likelihood estimation Terminal event
  • 相关文献

参考文献1

二级参考文献13

  • 1Clayton DG. Some approaches to the analysis of recurrent event data. Statistical Methods in Medical Research, 1994,3 (3) :244-262.
  • 2Kelly PJ, Lim LY. Survival analysis for recurrent event data:an applica- tion to childhood infectious diseases. Statistical in Medicine, 2000,19 ( 1 ) :13-33.
  • 3Hyun JL,Liu JX, Marlene ML. Comparison of Methods for Analyzing Recurrent Events Data:Application to the Emergency Department Visits of Pediatric Firearm Victims. Accident Analysis & Prevention, 2007,39 (2) :290-299.
  • 4Clayton DG. A model for association in bivariate life tables and its ap- plication in epidemiological studies of familial tendency in chronic dis- ease incidence. Biometrika, 1978,65 : 141 - 151.
  • 5Vaupel JW, Manton KG, Stallard E. The Impact of Heterogeneity in In- dividual Frailty on the Dynamics of Mortality. Demography, 1979,16: 439-454.
  • 6Hougaard P. Analysis of Multivariate Survival Data. New York : Spring- er-Verlag, 2000.
  • 7Michiels S, Baujat B, Mahe C, et al. Random effects survival models gave a better understanding of heterogeneity in individual patient data meta-analyses. Journal of Clinical Epidemiology, 2005,58 ( 3 ) : 238- 245.
  • 8Misra N, Gupta N, Gupta RD. Stochastic comparisons of multivariate frailty models. Journal of Statistical Planning and Inference, 2009,139 (6) :2084-2090.
  • 9Duchateau L, Janssen P. the frailty model (Statistics for Biology and Health). Springer :2007.
  • 10Hien TV, Vu, Matthew W, et al. A hybrid ML-EM algorithm for calcu- lation of maximum likelihood estimates in semiparametric shared frailty models. Computational Statistics & Data Analysis, 2002,40 ( 1 ) : 173- 187.

共引文献2

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部