期刊文献+

基于深度收缩稀疏自编码网络的飞行员疲劳状态识别 被引量:2

Recognition of fatigue status of pilots based on deep contractive sparse auto-encoding network
原文传递
导出
摘要 飞行员的疲劳状态识别具有重要的研究意义和应用价值.针对飞行员疲劳状态识别的复杂性和准确性,提出一种新的基于脑电信号的飞行员疲劳状态识别深度学习模型.在对飞行员的脑电信号进行滤波分解的基础上,提取delta波(0.5~4 Hz)、theta波(5~8 Hz)、alpha波(7~14 Hz)和beta波(14~30 Hz),将其重组信号作为深度收缩稀疏自编码网络-Softmax模型的输入向量,用以对飞行员疲劳状态的识别,所得到的实验结果与深度自编码网络-Softmax模型和传统方法PCA-Softmax模型识别结果进行比较,结果表明所建立的深度学习模型具有很好的分类效果,分类准确率可达91.67%,且学习所得的特征稳定性好,验证了所提模型具有稳定性和重复验证性. Recognition of fatigue status of pilots has important research significance. Aiming at the complexity and accuracy of recognition of fatigue status of pilots, a new deep learning model based on electroencephalogram signals is proposed to recognize fatigue status of pilots. The delta wave(0.5 ~ 4 Hz), theta wave(5 ~ 8 Hz), alpha wave(7 ~ 14 Hz)and beta wave(14 ~ 30 Hz) are extracted by multi-scale decomposition of electroencephalogram signals using filters, and the reconstruction signals of them are taken as the input vectors of the model. A deep contractive sparse auto-encoding network-Softmax model is proposed for identifying pilots’ fatigue status, and its recognition results are also compared with these of the deep auto-encoding network-Softmax and traditional PCA-Softmax model. The results show that the proposed deep learning model not only has a nice classification, the accuracy of which is up to 91.67 %, but also the learned features are stable, and the proposed model is stable and reusable verified.
作者 吴奇 储银雪 陈曦 林金星 任和 WU Qi;CHU yin-xue;CHEN Xi;LIN Jin-xing;REN He(Department of Automation,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Aircraft Customer Service Co.,Ltd.,Shanghai200241,China;School of Automation,Nanjing University of Posts and Telecornmunications,Nanjing 210023,China)
出处 《控制与决策》 EI CSCD 北大核心 2018年第12期2263-2269,共7页 Control and Decision
基金 国家自然科学基金项目(61671293 61473158 51705242) 江苏省自然科学基金项目(BK20141430) 上海浦江人才计划项目(15PJ1404300) 浙江大学CAD&CG国家重点实验室开放课题项目(A1713)
关键词 飞行员疲劳 脑电信号 深度收缩稀疏自编码网络 深度自编码网络 Softmax分类器 准确率 pilots'fatigue electroencephalOgram signals deep contractive sparse auto-encoding network deep auto- encoding network:Softmax classifier accuracy rate
  • 相关文献

参考文献3

二级参考文献26

共引文献27

同被引文献15

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部