期刊文献+

Rotated hyperbola model for smooth support vector machine for classification

Rotated hyperbola model for smooth support vector machine for classification
原文传递
导出
摘要 This article puts forward a novel smooth rotated hyperbola model for support vector machine( RHSSVM) for classification. As is well known,the support vector machine( SVM) is based on statistical learning theory( SLT)and performs its high precision on data classification. However,the objective function is non-differentiable at the zero point. Therefore the fast algorithms cannot be used to train and test the SVM. To deal with it,the proposed method is based on the approximation property of the hyperbola to its asymptotic lines. Firstly,we describe the development of RHSSVM from the basic linear SVM optimization programming. Then we extend the linear model to non-linear model. We prove the solution of RHSSVM is convergent,unique,and global optimal. We show how RHSSVM can be practically implemented. At last,the theoretical analysis illustrates that compared with other three typical models,the rotated hyperbola model has the least error on approximating the plus function. Meanwhile,computer simulations show that the RHSSVM can reduce the consuming time at most 54. 6% and can efficiently handle large scale and high dimensional programming. This article puts forward a novel smooth rotated hyperbola model for support vector machine( RHSSVM) for classification. As is well known,the support vector machine( SVM) is based on statistical learning theory( SLT)and performs its high precision on data classification. However,the objective function is non-differentiable at the zero point. Therefore the fast algorithms cannot be used to train and test the SVM. To deal with it,the proposed method is based on the approximation property of the hyperbola to its asymptotic lines. Firstly,we describe the development of RHSSVM from the basic linear SVM optimization programming. Then we extend the linear model to non-linear model. We prove the solution of RHSSVM is convergent,unique,and global optimal. We show how RHSSVM can be practically implemented. At last,the theoretical analysis illustrates that compared with other three typical models,the rotated hyperbola model has the least error on approximating the plus function. Meanwhile,computer simulations show that the RHSSVM can reduce the consuming time at most 54. 6% and can efficiently handle large scale and high dimensional programming.
作者 Wang En
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2018年第4期48-55,共8页 中国邮电高校学报(英文版)
基金 supported by the National Nature Science Foundation of China under Grant ( 61100165, 61100231, 61472307 ) Natural Science Foundation of Shaanxi Province ( 2016JM6004)
关键词 CLASSIFICATION smooth technology rotated hyperbola function SVM classification smooth technology rotated hyperbola function SVM
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部