期刊文献+

Altered small-world,functional brain networks in patients with lower back pain 被引量:4

Altered small-world, functional brain networks in patients with lower back pain
原文传递
导出
摘要 In this study, we aimed to investigate the functional network changes that occur in patients with lower back pain(LBP). We also investigated the link between LBP and the small-world properties of functional networks within the brain. Functional MRI(fMRI) was performed on 20 individuals with LBP and 17 age and gender-matched normal controls during the resting state. The severity of the pain in the individuals with LBP ranged from 5 to 8 on a 0–10 scale, with 0 indicating no pain. Network-based statistics were performed to investigate the differences between the brain networks of individuals with LBP and those of normal controls. Several small-world parameters of brain networks were calculated, including the clustering coefficient, characteristic path length, local efficiency, and global efficiency. These criteria reflect the overall network efficiency. The brain networks in the individuals with LBP due to herniation of a lumbar disc demonstrated a significantly longer characteristic path length as well as a lower clustering coefficient, global efficiency, and local efficiency compared to those in control subjects. We found that LBP patients tended to have unstable and inefficient brain networks when compared with healthy controls. In addition, LBP individuals showed significantly decreased functional connectivity in the anterior cingulate cortex, middle cingulate cortex, post cingulate cortex, inferior frontal gyrus, middle temporal gyrus, occipital gyrus, postcentral gyrus, precentral gyrus, supplementary motor area, thalamus, fusiform, caudate, and cerebellum. We believe that these regions may be involved in the pathophysiology of lower back pain. In this study, we aimed to investigate the functional network changes that occur in patients with lower back pain(LBP). We also investigated the link between LBP and the small-world properties of functional networks within the brain. Functional MRI(fMRI) was performed on 20 individuals with LBP and 17 age and gender-matched normal controls during the resting state. The severity of the pain in the individuals with LBP ranged from 5 to 8 on a 0–10 scale, with 0 indicating no pain. Network-based statistics were performed to investigate the differences between the brain networks of individuals with LBP and those of normal controls. Several small-world parameters of brain networks were calculated, including the clustering coefficient, characteristic path length, local efficiency, and global efficiency. These criteria reflect the overall network efficiency. The brain networks in the individuals with LBP due to herniation of a lumbar disc demonstrated a significantly longer characteristic path length as well as a lower clustering coefficient, global efficiency, and local efficiency compared to those in control subjects. We found that LBP patients tended to have unstable and inefficient brain networks when compared with healthy controls. In addition, LBP individuals showed significantly decreased functional connectivity in the anterior cingulate cortex, middle cingulate cortex, post cingulate cortex, inferior frontal gyrus, middle temporal gyrus, occipital gyrus, postcentral gyrus, precentral gyrus, supplementary motor area, thalamus, fusiform, caudate, and cerebellum. We believe that these regions may be involved in the pathophysiology of lower back pain.
出处 《Science China(Life Sciences)》 SCIE CAS CSCD 2018年第11期1420-1424,共5页 中国科学(生命科学英文版)
基金 supported by the National Natural Science Foundation of China (81401932) the Beijing Natural Science Foundation (7154246)
关键词 SMALL-WORLD network brain FUNCTIONAL networks RESTING-STATE FMRI low back PAIN small-world network brain functional networks resting-state f MRI low back pain
  • 相关文献

参考文献7

二级参考文献14

共引文献20

同被引文献16

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部