摘要
[目的]对桡骨远端骨折锁定钢板进行刚度最大化设计,运用有限元方法对重设计的钢板进行生物力学评价。[方法]运用三维建模软件和有限元分析软件完成个体化钢板的原型设计并进行初始分析,基于计算结果进一步对优化原型进行拓扑优化设计;通过有限元分析计算和对比常规钢板、优化原型钢板和优化钢板的体积、不同工况下的内固定刚度以及应力分布情况。[结果]所获得的优化钢板在体积上与常规锁定钢板相当,在轴向压缩刚度和扭转刚度方面均优于常规钢板,而在两种工况条件下优化钢板的应力峰值均低于常规钢板,应力分布更为均匀。[结论]对于桡骨远端骨折的个体化治疗,锁定钢板的拓扑优化能够为骨折的内固定提供可靠的方案。
[Objective] To design the locking plate associated with maximum stiffness for distal radius fractures and evaluate the biomechanical performance of the new design via finite element method. [Methods] The three-dimensional modeling and finite element analysis softwares were used to conduct the preliminary analysis and prototype design for the customized plate. Upon the calculation, the prototype plate was redesigned via topology optimization. Biomechanical performance including plate volume, stiffness, and stress distribution were compared between the new and conventional plate designs under multiple load cases using finite element analysis. [Results] The redesigned plate with equivalent volume had a better performance in stiffness regarding to either the compression or torsion comparing to the conventional plate. More appropriate stress distribution and lower magnitude of peak stress were observed on the redesigned plate. [Conclusion] The optimized design can provide a reliable solution for customized treatment of the distal radial fracture regarding the stability and safety.
作者
钟环
欧阳汉斌
魏波
陈海聪
黄文华
杨洋
张晓东
陈焱君
ZHONG Huan;OUYANG Han-bin;WEI Bo;CHEN Hai-cong;HUANG Wen-hua;YANG Yang;ZHANG Xiao-dong;CHEN Yan-jun(De-partment of Orthopedic Surgery,The Affiliated Hospital of Guangdong Medical University,Zhanjiang 524001,China;Depart-ment of Human Anatomy,Basic Medical College,Southern Medical University,Guangzhou 510515,China;Department of Med-ical Imaging,The Third Affiliated Hospital,Southern Medical University,Guangzhou 510630,China)
出处
《中国矫形外科杂志》
CAS
CSCD
北大核心
2018年第23期2189-2194,共6页
Orthopedic Journal of China
基金
国家重点研发计划项目(编号:2017YFC1103403)
广东省科技计划项目(编号:2016B090917001
2016B090925001
2017B090912006)
关键词
桡骨骨折
锁定钢板
有限元
拓扑优化
生物力学
radius fractures
locking plate
finite element
topology optimization
biomechanics