期刊文献+

基于倾向得分多层模型的非概率抽样统计推断 被引量:6

Statistical Inference of Non-probability Sampling Based on Propensity Score Multilevel Model
下载PDF
导出
摘要 文章针对具有嵌套结构数据的网络候选者数据库,提出基于倾向得分多层模型的非概率抽样推断方法:根据网络候选者数据库的调查样本和参考样本,构建多层回归模型对倾向得分进行估计,并将倾向得分估计的逆作为网络候选者数据库调查样本的调整权数来估计总体。结果显示,基于倾向得分多层回归模型的总体估计效果较好,比基于倾向得分Logistic模型的总体估计的偏差更小,效率更高。 This paper aims at the web candidate database with nested structure data to propose the inference method of non-probability sampling based on propensity score multilevel model.The multilevel regression model is built to estimate propensity scores according to a survey sample of the web candidate database and a reference sample,and the population is then estimated via using the inverse of propensity scores as adjusted weights of the survey sample of the web candidate database.The results show that the overall estimation effect based on propensity score multilevel model is better,with less deviation but higher efficiency than the overall estimation based on propensity score Logistic model.
作者 刘展 Liu Zhan(School of Mathematics and Statistics,Hubei University,Wuhan 430062,China;Hubei Key Laboratory of Applied Mathematics,Hubei University,Wuhan 430062,China)
出处 《统计与决策》 CSSCI 北大核心 2018年第23期11-15,共5页 Statistics & Decision
基金 国家社会科学基金资助项目(18BTJ022)
关键词 倾向得分 多层模型 网络候选者数据库 非概率抽样 propensity score multilevel model web candidate database non-probability sampling
  • 相关文献

同被引文献29

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部