2Hense A. On the possible existence of a strange attractor for the southern oscillation [ J ]. Beitrage zur Physik der Atmosphare, 1987, 60( 1 ) : 34-47.
3Obergon N. Modeling-high-resolution rain rates via a deterministic fractal -multifractal approach [J]. Fractals, 2002, 10 (3) : 387-394.
4Unganai L S, Mason S J. Long-range predictability of zimbabwe summer rainfall [ J ]. International Journal of Climatology, 2002, 22(9) : 1091-1103.
5Sivakumar B. Chaos theory in geophysics: Past, present and future[J]. Chaos, Solitons and Fractals, 2004, 19(5) : 441-462.
6Sivakumar B, Wallender W W, Horwath W R. Nonlinear analysis of rainfall dynamics in California' s Sacramento Valley [J]. Hydrol Process, 2006, 20(8) : 1723-1736.
7Theiler J, Eubank S, Longtin A. Testing for nonlinearity in time series : The method of surrogate data [ J ]. Physica D, 1992, 58(1-4): 77-94.
8Cao L Y. Practical method for determining the minimum embedding dimension of a scalar time series [ J ]. Physica D, 1997, 110(1) : 43-50.
9Theiler J, Prichard D. Constrained-realization Monte-Carlo method for hypothesis testing[ J ]. Physica. D, 1996, 94 (4) : 221-235.
10Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D, 1983, 9(31) : 189-208.