期刊文献+

离散周期集上的弱Gabor双框架

Weak Gabor bi-frames on discrete periodic sets
原文传递
导出
摘要 因其在数字信号处理的潜在应用,近年来,离散Gabor分析引起了众多学者的关注.本文研究整数集Z的离散周期子集S上的Gabor分析.众所周知,当S≠Z时, l^2(Z)的Gabor框架到l2(S)上的投影不可能穷尽l^2(S)的所有Gabor框架.本文引入了弱Gabor双框架(weak Gabor bi-frame,WGBF),其推广了Gabor双框架的概念,得到了l^2(S)上WGBF的Zak变换域刻画和时域刻画.所得结果即使S=Z时仍是新的,并给出了一些例子. Due to its good potential for digital signal processing,discrete Gabor analysis has received broad interests in recent years.This paper addresses Gabor analysis on a general discrete periodic subset S of Z.It is well known that the projections of Gabor frames for l^2(Z)onto l^2(S)cannot cover all Gabor frames for l^2(S) if S ≠Z.In this paper,we introduce the notion of weak Gabor bi-frame (WGBF)which generalizes the one of Gabor bi-frame.We obtain a Zak transform domain characterization and a time domain characterization of WGBF in l^2(S).The obtained results are new even if S =Z.Some examples are provided.
作者 李云章 赵静 Yunzhang Li;Jing Zhao
出处 《中国科学:数学》 CSCD 北大核心 2018年第12期1803-1818,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11271037)资助项目
关键词 框架 GABOR框架 双框架 弱Gabor双框架 离散Gabor分析 frame Gabor frame bi-frame weak Gabor bi-frame discrete Gabor analysis
  • 相关文献

参考文献4

二级参考文献77

  • 1LI ZhongYan 1 & HAN DeGuang 2, 1 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China,2 Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA.Constructing super Gabor frames:the rational time-frequency lattice case[J].Science China Mathematics,2010,53(12):3179-3186. 被引量:3
  • 2LI YunZhang,LIAN QiaoFang.Gabor systems on discrete periodic sets[J].Science China Mathematics,2009,52(8):1639-1660. 被引量:4
  • 3Peter L. S?ndergaard.Gabor frames by sampling and periodization[J]. Advances in Computational Mathematics . 2007 (4)
  • 4A. J. E. M. Janssen.From continuous to discrete Weyl-Heisenberg frames through sampling[J]. The Journal of Fourier Analysis and Applications . 1997 (5)
  • 5Gabor Analysis and Algorithms, Theory and Applications. . 1998
  • 6Gabardo J P,Li Y Z.Density results for Gabor systems associated with periodic subsets of the real line. Journal of Approximation Theory . 2009
  • 7Heil C.A discrete Zak transform. Technical Report MTR-89W00128 . 1989
  • 8Janssen A J E M.From continuous to discrete Weyl-Heisenberg frames through sampling. Journal of Fourier Analysis and Applications . 1997
  • 9Auslander L,Gertner I C,Tolimieri R.The discrete Zak transform application to time-frequency analysis and synthesis of nonstationary signal. IEEE Transactions on Signal Processing . 1991
  • 10Blcskei H,Hlawatsch F.Discrete Zak transforms, polyphase transforms and applications. IEEE Transactions on Signal Processing . 1997

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部