期刊文献+

直流GIL金属微粒陷阱捕捉概率与优化设计 被引量:13

Trapping Probability and Designing Optimization of Particle Trap in DC GIL
下载PDF
导出
摘要 直流气体绝缘金属封闭输电线路(GIL)中的运动金属微粒会极大降低GIL的绝缘强度,故而需要采取微粒陷阱等措施加以限制。本文针对直流GIL中金属微粒陷阱开展研究,首先搭建了封闭式以及半封闭式同轴圆柱电极实验平台,并构建了对应的三维仿真模型;然后通过仿真计算优化了陷阱参数,据此提出了微粒陷阱设计依据“捕捉参数”-Pcap,并对比了不同参数的微粒陷阱捕捉效果;最后根据微粒运动规律提出了针对性陷阱布置策略,并用实验进行了验证。实验结果表明:金属微粒被捕捉的概率随捕捉参数增大呈现增大趋势,当Pcap值为0.8左右时捕捉概率趋于稳定;直流电压下绝缘子附近金属微粒的落点具有很强的集中性,在微粒落点集中区域进行针对性陷阱布置,可以缩短捕捉时间,取得良好效果。因此,研究结果可以为工程中微粒陷阱的设计及使用提供一定的指导。 The movement of metal particles in DC GIL will greatly reduce the insulation strength of GIL, so it is necessary to take measures such as particle traps to limit the movement. Aiming at the metal particle traps in DC GIL, firstly, we built a closed and a semi-closed coaxial cylindrical electrode experimental platform, and established the corresponding 3D simulation model. Secondly, the parameters of the trap were optimized based on the simulation results, and the capture parameter Pcap was proposed as the design basis of particle trap. The capturing effect of particle traps with different parameters was compared as well. Finally, a targeted trap placement strategy was proposed based on the motion regularities of metal particles,and was verified by experiments. The results show that the probability of captured metal particles increases as the capture parameter increases, and when the capture parameter is about 0.8, the capture probability of motion tends to be stable. The drop points of metal particles near insulator under DC voltage have strong concentration, and performing targeted trap placement in the area where the particles are concentrated can reduce the capture time and obtain good capturing effect. Therefore, the study results can provide some guidance for the design and application of particle traps in engineering.
作者 王健 倪潇茹 王志远 李庆民 李成榕 WANG Jian;NI Xiaoru;WANG Zhiyuan;LI Qingmin;LI Chengrong(Beijing Key Laboratory of High Voltage and EMC, North China Electric Power University, Beijing 102206, China;Chaoyang Power Supply Company, State Grid Beijing Electric Power Company, Beijing 100124, China)
出处 《高电压技术》 EI CAS CSCD 北大核心 2018年第12期4090-4097,共8页 High Voltage Engineering
基金 国家自然科学基金(51737005 51807060) 北京市自然科学基金(3172035)~~
关键词 直流GIL 金属微粒 微粒陷阱 运动特性 布置策略 捕捉时间 DC GIL metal particle particle trap motion characteristics layout strategy capturing time
  • 相关文献

参考文献9

二级参考文献141

共引文献272

同被引文献193

引证文献13

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部