期刊文献+

基于近似观测的加权L1压缩感知SAR成像 被引量:2

Approximated Observation-Based Weighted L1 Compressed Sensing SAR Imaging
下载PDF
导出
摘要 近些年,压缩感知(CS)理论已经被应用于合成孔径雷达(SAR)成像。传统的CS—SAR成像需要消耗很高的计算机内存.为了减少计算机内存消耗,基于近似观测的CS-SAR成像模型被提出。已有的基于近似观测的CS-SAR成像模型使用Lq(0≤q≤1)正则化项来稀疏约束成像结果,当q越小时,得到的解越稀疏;但是当q=0时,该优化问题就变成了NP难问题。文中提出了基于近似观测的加权L1-CS-SAR成像模型,加权L1正则化既能够很好地逼近L0正则化,又能够避免NP难问题。进一步,我们针对该成像模型提出了相应的迭代加权阈值算法,仿真结果证明了所提出的成像算法的性能优于已存在的迭代阈值算法。 Recently,the theory of compressed sensing( CS) has been applied in synthetic aperture radar( SAR) imaging. Since the conventional CS-SAR imaging requires high memory cost,the approximated observation-based CS-SAR imaging has been proposed to reduce the computer memory cost. The existing CS-SAR imaging based on approximated observation utilizes Lq(0≤q≤1) regularization which can contribute to generating sparse solutions. The smaller the q,the sparser the solutions yielded by Lq regularization. However,in the case of q = 0,the problem is NP-hard. In this paper,approximated observation-based weighted L1-CS-SAR imaging model is proposed,the regularization of which not only achieves an approximation of L0 regularization,but also avoids an NP-hard problem. Furthermore,the iterative weighted thresholding algorithm is proposed to solve the proposed imaging model. Simulation results demonstrate the superiority of the proposed algorithm over the existing iterative thresholding algorithms.
作者 李博 刘发林 周崇彬 王峥 韩浩 LI Bo;LIU Fa-lin;ZHOU Chong-bin;WANG Zheng;HAN Hao(Department of Electronic Engineering and Information Scienee,University of Science and Technology of China,Hefei 230026, China;Key Laboratory of Electromagnetic Space Information,Chinese Academy of Sciences,Hefei 230026,China)
出处 《微波学报》 CSCD 北大核心 2018年第6期62-67,共6页 Journal of Microwaves
基金 国家自然科学基金(61431016和61771446)
关键词 压缩感知 合成孔径雷达 近似观测 加权L1正则化 迭代加权阈值算法 compressed sensing synthetic aperture radar approximated observation weighted L1 regularization iterative weighted thresholding algorithm
  • 相关文献

参考文献1

二级参考文献8

  • 1D. L. Donoho.Comressed sensing. IEEE Transactions on Information Theory . 2006
  • 2Emmanuel J C,Terence T.Decoding by linear programming. IEEE Transactions on Information Theory . 2005
  • 3H.Mohimani,M.B.Zadeh,C.Jutten.A fast approach for overcomplete sparse decomposition based onsmoothed Norm. IEEE Transactions on Signal Processing . 2009
  • 4TROPP J,GILBERT A.Signal recovery from random measurementsvia orthogonal matching pursuit. IEEE Transactions on Info The-ory . 2007
  • 5Needell D,Vershynin R.Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of selected topics in signal processing . 2010
  • 6D Donoho,X Huo.Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory . 2001
  • 7Liu J.H,Xu S.K,Gao X.Z,Li X.Compressive Radar Imaging Methods Based on Fast Smoothed L0 Algorithm. 2012International Workshop on Information and Electronics Engineering . 2012
  • 8徐秀丽,童广德,张元,陈奇平,赵宇.近场扫描架三维SAR成像处理技术[J].微波学报,2010,26(S2):84-87. 被引量:3

共引文献2

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部