期刊文献+

自适应非零延迟MMSE盲均衡算法

An Adaptive Non-Zero Delay MMSE Blind Equalization Algorithm
下载PDF
导出
摘要 针对单输入多输出(SIMO)模型提出一种基于非零延迟均衡器的自适应最小均方误差(MMSE)盲均衡算法,该方法通过均衡器系数、不同延迟下的截短协方差矩阵及信号子空间三者之间的关系将零延迟均衡器推广到非零延迟均衡器。该方法不同于传统的零延迟均衡算法,可利用信道的多阶参数进行盲均衡使其减小信道一阶参数对均衡效果的影响,且对信道阶数过估计具有鲁棒性。文章给出了算法的Batch实现过程,同时为更好地适应一般时变信道环境和实现实时处理的要求,利用快速次子空间追踪算法(FDPM)通过递归迭代得到算法的自适应实现过程。仿真实验表明在信道一阶参数能量较小或信道阶数过估计的条件下,即使信噪比较低,算法仍具有良好的均方误差(MSE)性能,此外自适应算法能够在几百个样本值内使信号快速达到收敛。 In view of SIMO model,an adaptive MMSE blind equalization algorithm is proposed based on the non-zero delay equalizer.The method,through the relationships between the equalizer coefficients,the Variance matrices and the signal subspaces,is to extend the zero-delay equalizer to a non-zero delay equalizer.This method is different from the traditional zero-delay equalization algorithm,and can be utilized by the channel's multi-level parameters for performing blind equalization to reduce the influence of the firstorder parameters of the channel on the equalization effect,and has robust to the overestimation of the channel order.In order to better adapt to the general time-varying channel environment and realize the real-time processing requirements,this paper presents a fast implementation of the algorithm by FDPM through recursive iteration.The simulation experiments show that the algorithm still has a good Mean Square Error (MSE)performance even if the signal-to-noise ratio is low under the condition that the firstorder energy of the channel is small or the channel order is overestimated.In addition,the adaptive algorithm can quickly converge within a few hundred sample values.
作者 高从芮 许华 GAO Congrui;XU Hua(Information and Navigation College,Air Force Engineering University,Xi'an 710077,China)
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2018年第6期79-83,96,共6页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金(61001111)
关键词 盲均衡 非零延迟 自适应 最小均方误差 blind equalization non-zero delay adaptive minimum mean-square error
  • 相关文献

参考文献2

二级参考文献18

  • 1Tong L. , Xu G. and Kailath T. Blind identification and equalization based on second-order statistics: a time domain approach [ J ]. IEEE Transactions on Information Theory, 1994, 41(1) :308-311.
  • 2Gazzah H.. SOS-based blind channel equalization with quadratic complexity [ J ]. IEEE Transactions on Signal Processing, 2011, 59(2): 837-841.
  • 3Li X. , Fan H.. Direct Estimation of Blind zero-forcing equalizers based on second-oder Statistics [ J ]. IEEE Transactions on Signal Processing, 2000, 48 ( 8 ) : 2211-2218.
  • 4Seung Kyung, Cho Juphil, and KiBaik Heung. Blind adaptive channel equalization using muhichannel linear prediction-based cross-correlation[J]. IEEE Transactions on Consumer Electronics, 2004, 50(4) :1026-1032.
  • 5Liu S. 1. , Zhu F. , Hu J. h.. Research on blind equalization algorithm of modified RLS based on canonical correlation analysis [ C ] // IEEE 2009 International Conference on Communications and Mobile Computing. Yunnan: 2009: 377-380.
  • 6Gazzab H.. Optimum blind muhichannel equalization using the linear prediction algorithm [ J ]. IEEE Transactions on Signal Processing, August 2006, 54 (08) : 32423247.
  • 7Kaeha I, Meraim K A and Belouehrani A. A low-cost adaptive algorithm for blind equalization without channel order estimation [ C]//ISCCSP 2008. Malta: 12-14 March 2008.
  • 8Chen S. , Wolfgang A. and Shi Y.. Space-time decision feedback equalization using a hainimum bit error rate design for single-input Multi-Output Channels [ J ]. lET Communications, 2007, 1 (4) : 671-678.
  • 9Chen F.j. , Kwong S. , Kok C.w.. Blind MMSE equalization of FIR/IIR channels using oversampling and muhicbannel linear prediction[J]. ETRI Journal, 2009, 31(2).
  • 10Doukopoulos X. g. Fast and stable subspace tracking [ J ]. IEEE Transactions on Signal Processing, 2008, 56(04) : 1452-1465.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部