摘要
提出一种基于小波变换与SVD相结合的方法用于提取水电机组振动故障特征。运用小波变换对已去噪处理的水电机组振动信号进行变换,变换得到信号各分支的小波分解系数,对各分支系数进行差值单支重构后,组成SVD的输入矩阵,提取奇异值得到特征向量。应用概率神经网络对提取的奇异值特征量进行效果分类。通过水电站机组实测数据验证表明该特征提取方法操作简单稳定,具有较高区分度与较好识别率,可以为水电机组状态故障诊断提供有效依据。
In this paper,a method based on wavelet transform and SVD is proposed to extract vibration fault characteristics of hydropower units.The wavelet transform was used to transform the de-noised vibration signal of hydropower unit.The wavelet decomposition coefficients of each branch of the signal are obtained by the transformation.After single branch reconstructing the differences of the branch coefficients,the SVD input matrix is formed and the singular value is extracted to obtain the feature vector.Probabilistic neural networks are used to classify the extracted singular value features.The test results show that the method is simple and stable,with higher division and better recognition rate,which can provide an effective basis for the diagnosis of hydropower unit fault.
作者
刘东
王昕
黄建荧
胡晓
肖志怀
LIU Dong;WANG Xin;HUANG Jian-ying;HU Xiao;XIAO Zhi-huai(School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072,Hubei Province,China;Fujian Shuikou power generation group co.,LTD,,Fuzhou 350004,Fujian Province,China)
出处
《中国农村水利水电》
北大核心
2018年第12期169-172,共4页
China Rural Water and Hydropower
基金
国家电网水口发电集团SGFJSK00JXYJ[2017]85
关键词
水电机组
振动信号
小波变换
奇异值分解
特征提取
hydropower units
vibration signal
wavelet transform
singular value decomposition
feature extraction