摘要
Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a simple but efficient scenario for multiple domains injection in magnetic nanowires.The domain-chains(DCs),a cluster of multiple domains,can be dynamically generated with tunable static properties.It is found that the number of domains in a single DC can be dynamically adjusted by varying the frequency of microwave field(MF)and the period of spin-polarized current(SPC)intensity.The static properties of the DCs,i.e.,its length,spacing,and period between neighboring DCs,can be dynamically controlled by regulating the frequency of MF and the intensity of SPC.We have also discussed the possibility of using domain-chains as information carries,which provides a meaningful approach for flexible multi-bit information storage applications.
Most of the reported observations are about the dynamic properties of individual domain-walls in magnetic nanowires,but the properties of multiple stripe-domains have rarely been investigated.Here,we demonstrate a simple but efficient scenario for multiple domains injection in magnetic nanowires.The domain-chains(DCs),a cluster of multiple domains,can be dynamically generated with tunable static properties.It is found that the number of domains in a single DC can be dynamically adjusted by varying the frequency of microwave field(MF)and the period of spin-polarized current(SPC)intensity.The static properties of the DCs,i.e.,its length,spacing,and period between neighboring DCs,can be dynamically controlled by regulating the frequency of MF and the intensity of SPC.We have also discussed the possibility of using domain-chains as information carries,which provides a meaningful approach for flexible multi-bit information storage applications.
基金
Project supported by the National Natural Science Foundation of China(Grant No.11704191)
the Jiangsu Specially-Appointed Professor,the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20171026)
the Six-Talent Peaks Project in Jiangsu Province,China(Grant No.XYDXX-038)