期刊文献+

Calibration of the superconducting gravimeter based on a cold atom absolute gravimeter at NIM 被引量:1

Calibration of the superconducting gravimeter based on a cold atom absolute gravimeter at NIM
下载PDF
导出
摘要 The scale factor of a superconducting gravimeter(SG) is usually calibrated by using simultaneous and co-located gravity measurements with the FG5-type absolute gravimeter(AG). In this paper, another new kind of absolute gravimetercold atom gravimeter(CAG) is first reported to calibrate the SG. Five-day side-by-side gravity measurements have been carried out by using our CAG(NIM-AGRb-1) to calibrate the SG(iGrav-012) located at Changping Campus of the National Institute of Metrology(NIM) of China. A weighted least-squares method is applied to determine the scale factor and the result is given as(-928.01 ± 0.73) nm·s;·V;with a precision of 0.79‰. We have demonstrated that a calibration precision of 1‰ level can be achieved after 3 days of parallel observations at spring tide. The obtained calibration results are then compared with the previous calibration by FG5 X-249, which shows that the calibration precision obtained by using NIM-AGRb-1 was slightly higher than FG5 X-249 with the same time interval. The factors affecting the calibration precision are analyzed in the calibrations by means of different AGs. Finally, several calibration experiments for SG iGrav-012 are discussed. The final scale factor is estimated as(-927.58 ± 0.36) nm·s;·V;with an accuracy of 0.39‰. Our main results demonstrate that the CAGs can be used for high-precision calibrations of SGs. The scale factor of a superconducting gravimeter(SG) is usually calibrated by using simultaneous and co-located gravity measurements with the FG5-type absolute gravimeter(AG). In this paper, another new kind of absolute gravimetercold atom gravimeter(CAG) is first reported to calibrate the SG. Five-day side-by-side gravity measurements have been carried out by using our CAG(NIM-AGRb-1) to calibrate the SG(iGrav-012) located at Changping Campus of the National Institute of Metrology(NIM) of China. A weighted least-squares method is applied to determine the scale factor and the result is given as(-928.01 ± 0.73) nm·s^(-2)·V^(-1) with a precision of 0.79‰. We have demonstrated that a calibration precision of 1‰ level can be achieved after 3 days of parallel observations at spring tide. The obtained calibration results are then compared with the previous calibration by FG5 X-249, which shows that the calibration precision obtained by using NIM-AGRb-1 was slightly higher than FG5 X-249 with the same time interval. The factors affecting the calibration precision are analyzed in the calibrations by means of different AGs. Finally, several calibration experiments for SG iGrav-012 are discussed. The final scale factor is estimated as(-927.58 ± 0.36) nm·s^(-2)·V^(-1) with an accuracy of 0.39‰. Our main results demonstrate that the CAGs can be used for high-precision calibrations of SGs.
作者 王启宇 冯金扬 王少凯 庄伟 赵阳 牟丽爽 吴书清 Qiyu Wang;Jinyang Feng;Shaokai Wang;Wei Zhuang;Yang Zhao;Lishuang Mou;Shuqing Wu
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期250-255,共6页 中国物理B(英文版)
基金 Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFF0200103 and 2016YFF0200200) the Fundamental Research Funds for National Institute of Metrology,China(Grant No.22-AKY1608)
关键词 cold atom gravimeter CALIBRATION superconducting gravimeter scale factor cold atom gravimeter calibration superconducting gravimeter scale factor
  • 相关文献

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部