期刊文献+

16-channel dual-tuning wavelength division multiplexer/demultiplexer

16-channel dual-tuning wavelength division multiplexer/demultiplexer
下载PDF
导出
摘要 A 16-channel dual tuning wavelength division multiplexer/demultiplexer based on silicon on insulator platform is demonstrated, which is both peak wavelength tunable and output optical power tunable. The wavelength division multiplexer/demultiplexer consists of an arrayed waveguide grating for wavelength division multiplexing/demultiplexing, a heater for peak wavelength tuning and a variable optical attenuator based on p–i–n carrier-injection structure for optical power tuning. The experimental results show that the insertion loss on chip of the device is 3.7 dB–5.7 dB and the crosstalk is 7.5 dB–9 dB. For the tunability of the peak wavelength, 1.058-nm wavelength tunability is achieved with 271.2-mW power consumption, and the average modulation efficiency is 3.9244 nm/W; for the tunability of the optical power, the optical power equalization is achieved in all 16 channels, 20-dB attenuation is achieved with 144.07-mW power consumption,and the raise/fall time of VOA is 35 ns/42 ns. A 16-channel dual tuning wavelength division multiplexer/demultiplexer based on silicon on insulator platform is demonstrated, which is both peak wavelength tunable and output optical power tunable. The wavelength division multiplexer/demultiplexer consists of an arrayed waveguide grating for wavelength division multiplexing/demultiplexing, a heater for peak wavelength tuning and a variable optical attenuator based on p–i–n carrier-injection structure for optical power tuning. The experimental results show that the insertion loss on chip of the device is 3.7 dB–5.7 dB and the crosstalk is 7.5 dB–9 dB. For the tunability of the peak wavelength, 1.058-nm wavelength tunability is achieved with 271.2-mW power consumption, and the average modulation efficiency is 3.9244 nm/W; for the tunability of the optical power, the optical power equalization is achieved in all 16 channels, 20-dB attenuation is achieved with 144.07-mW power consumption,and the raise/fall time of VOA is 35 ns/42 ns.
作者 Pei Yuan Yue Wang Yuan-Da Wu Jun-Ming An Xiong-Wei Hu 袁配;王玥;吴远大;安俊明;胡雄伟
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期315-320,共6页 中国物理B(英文版)
基金 Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402504) the National Nature Science Foundation of China(Grant No.61435013)
关键词 arrayed waveguide grating variable optical attenuator silicon photonics arrayed waveguide grating variable optical attenuator silicon photonics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部