摘要
We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies, λ and D respectively,the energy spectrums, internal energy, static susceptibility and specific heat are calculated. Especially, the quantum phase transition of the magnetization plateau induced by single-ion anisotropy D is obtained in the model of the ferrimagnetic spin chain by using Dyson–Maleev mean-field theory.
We use the mean-field approximation of Dyson–Maleev representation to study an XXZ Heisenberg ferrimagnetic spin chain with single-ion anisotropy. By solving the self-consistent equations with different anisotropies, λ and D respectively,the energy spectrums, internal energy, static susceptibility and specific heat are calculated. Especially, the quantum phase transition of the magnetization plateau induced by single-ion anisotropy D is obtained in the model of the ferrimagnetic spin chain by using Dyson–Maleev mean-field theory.
基金
Project supported by the National Natural Science Foundation of China(Grant No.10774035)
the Qianjiang RenCai Program of Zhejiang Province,China(Grant No.2007R0010)