期刊文献+

Chaos control in a discrete-time predator-prey model with weak Allee effect 被引量:1

原文传递
导出
摘要 The stability of the predator-prey model subject to the Allee effect is an interesting topic in recent times.In this paper,we investigate the impact of weak Allee effect on the stability of a discrete-time predator-prey model with Holling type-IV functional response.The mathematical features of the proposed model are analyzed with the help of equilibrium analysis,stability analysis,and bifurcation theory.We provide sufficient conditions for the flip bifurcation by considering Allee parameter as the bifurcation parameter.We observe that the model becomes stable from chaotic dynamics as the Allee parameter increases.Further,we observe bi-stability behavior of the model between only prey existence equilibrium and the coexistence equilibrium.Our analytical findings are illustrated through numerical simulations.
出处 《International Journal of Biomathematics》 SCIE 2018年第7期123-148,共26页 生物数学学报(英文版)
  • 相关文献

参考文献3

二级参考文献46

  • 1G. T. Skalski and J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II model, Ecology 82 (2001) 3083-3092.
  • 2M. P. Hassell and C. C. Varley, New inductive population model for insect parasites and its bearing on biological control, Nature 223 (1969) 1133-1137.
  • 3J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol. 44 (1975) 331-341.
  • 4D. L. DeAngelis, R. A. Goldsten and R. Neill, A model for trophic interaction, Ecology 56 (1975) 881-892.
  • 5P. H. Crowley and E. K. Martin, Functional response and interference within and between year classes of a dragonfly population, J. N. Amer. Benthol. Soc. 8 (1989) 211-221.
  • 6S. Liu and E. Beretta, A stage-structured predator-prey model of Beddington-DeAngelis type, SIAM J. Appl. Math. 66 (2006) 1101-1129.
  • 7M. Zhao and S. Lv, Chaos in a three-species food chain model with a Beddington-DeAngelis functional response, Chaos, Soliton Fractals 40 (2009) 2305-2316.
  • 8M. Zhao and L. Zhang, Permanence and chaos in a host-parasitoid model with prolonged diapause for the host, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009) 4197-4203.
  • 9S. Gakkhar, K. Negi and S. K. Sahani, Effects of seasonal growth on a ratio-dependent delayed prey-predator system, CommuTe. Nonlinear Sci. Numer. Simulat. 14 (2009) 850-862.
  • 10H. Nie and J. Wu, Coexistence of an unstirred chemostat model with Beddington-DeAngelis functional response and inhibitor, Nonlinear Anal. Real World Appl. 11(2010)3639-3652.

共引文献7

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部