摘要
本文通过分析总结内陆流域黑河水系干流莺落峡龙电渠测验断面水文特点以及流量测验现存问题,提出应用matlab编程软件设计LM-BP神经网络预测模型的方法;采用有导师训练方式,并获取历史实测流量测验资料中点流速和平均流速数据做为样本集,对网络模型的设计、训练和测试做了研究和分析。根据网络仿真和测试结果可以得出,在误差允许范围之内,黑河龙电渠测验断面流量测验采用"五线一点"法的测验方案和LM-BP神经网络模型推测流量的方法,其推测值精度较高,且具有一定的推广应用价值。
In this paper,through the analysis of the hydrological characteristics and current problems of flow.test in the YingluoxiaLongdian canal test section of the Heiheriver of inland river basin,the method of using MATLAB programming software to design the prediction model of LM - BP neural network is put forward.The design,training and test of the network model are studied and analyzed by adopting tutor training and the data of point velocity and average flow velocity in measured flow test as sample sets.According to the network simulation and test results,it can be obtained that the method of using "five line one point"test scheme and LM - BP neural network model to estimate the flow ratehas certain practical value in the test section of the HeiheLongdian canal.The accuracy of its predicted values is high in the allowable range of error.
作者
陈文雄
朱咏
陈学林
CHEN Wen-xiong;ZHU Yong;CHEN Xue-lin(Hydrology and Water Resources Bureau of Gansu Province,Lanzhou 73000,China;Zhangye Hydrology and Water Resources Bureau of Gansu Province,Zhangye 734000,China)
出处
《地下水》
2018年第5期115-117,130,共4页
Ground water
关键词
LM-BP神经网络
测点流速
平均流速
断面流量
黑河龙电渠
LM - BPneural network
flow velocity of measuring point
average flow velocity
cross - sectional flow
Heihe-Longdian canal