期刊文献+

Effects of CFB Ash on the Adsorption Mechanism of Polycarboxylate Superplasticiser

Effects of CFB Ash on the Adsorption Mechanism of Polycarboxylate Superplasticiser
下载PDF
导出
摘要 The effects of circulating fluid bed(CFB) ash on the adsorption performance of polycarboxylate superplasticiser and the mechanism of this influence on the dispersive property of the polycarboxylate superplasticiser were investigated by determing the cement paste fluidity, total organic carbon adsorption, infrared spectroscopic analyses and ζ potential test. The experimental results show that the addition of an inorganic salt into the mixture to change the content of SO42-and Fe2O3can improve the adaptability between the CFB ash and polycarboxylate superplasticiser. Adsorption may occur between the polycarboxylate superplasiciser and Fe2O3, SO42-or other components in CFB ash, leading to a significant reduction in paste fluidity. As the content of Na2SO4in CFB ash reaches 3% or Fe2O3reaches 9%, the paste loses its liquidity. The organic carbon content in the liquor decreases with an increase in Na2SO4or Fe2O3content. Adding some Ba(NO3)2and Na2S to the liquor can recover the organic carbon content to a certain extent, and the absolute value of ζ potential will increase. The addition of Ba(-NO3)2or Na2S reduces the adsorption property of Na2SO4or Fe2O3in CFB ash on the polycarboxylate superplasticiser. The effects of circulating fluid bed(CFB) ash on the adsorption performance of polycarboxylate superplasticiser and the mechanism of this influence on the dispersive property of the polycarboxylate superplasticiser were investigated by determing the cement paste fluidity, total organic carbon adsorption, infrared spectroscopic analyses and ζ potential test. The experimental results show that the addition of an inorganic salt into the mixture to change the content of SO_4^(2-)and Fe_2 O_3 can improve the adaptability between the CFB ash and polycarboxylate superplasticiser. Adsorption may occur between the polycarboxylate superplasiciser and Fe_2 O_3, SO_4^(2-)or other components in CFB ash, leading to a significant reduction in paste fluidity. As the content of Na_2 SO_4 in CFB ash reaches 3% or Fe_2 O_3 reaches 9%, the paste loses its liquidity. The organic carbon content in the liquor decreases with an increase in Na2_ SO_4 or Fe_2 O_3 content. Adding some Ba(NO_3)_2 and Na_2 S to the liquor can recover the organic carbon content to a certain extent, and the absolute value of ζ potential will increase. The addition of Ba(-NO_3)_2 or Na_2 S reduces the adsorption property of Na_2 SO_4 or Fe_2 O_3 in CFB ash on the polycarboxylate superplasticiser.
作者 LIU Juanhong GAO Meng SONG Shaomin 刘娟红;GAO Meng;SONG Shaomin
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1323-1333,共11页 武汉理工大学学报(材料科学英文版)
基金 Funded by the National Key Research and Development Program of China(2017YFC0602903) the National Natural Science Foundation of China(51834001)
关键词 CFB ash polycarboxylate superplasticiser FLUIDITY TOC adsorption CFB ash polycarboxylate superplasticiser fluidity TOC adsorption
  • 相关文献

参考文献4

二级参考文献27

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部