期刊文献+

混合运动模式下的双重阈值零速区间检测算法 被引量:5

Double-threshold zero-velocity interval detection algorithm for multi-movement patterns
下载PDF
导出
摘要 针对固定阈值零速检测算法在混合运动模式下容易解算出错等问题,在分析了正常行走、上楼和下楼等三种室内常见运动模式的基础上,提出了一种混合运动模式下的双重阈值零速检测算法。该算法首先采用角速度变化特征点识别出正常行走、上楼和下楼等三种运动模式,然后根据不同的运动模式匹配相应的加速度和角速度阈值以及时间窗口的大小,利用双重阈值配合时间窗口的方法检测得到零速区间。最后,采用该算法对不同的行人的步态在混合运动模式下进行了检测,结果表明该方法可有效识别每步的运动模式,并且能够完全检测出每步的零速区间。在定位结果上相比于固定阈值零速检测法,该算法的定位精度平均提升了70%以上。 To deal with the low accuracy of zero velocity detection in multi movement patterns based on fixed threshold,a zero-velocity interval detection algorithm with double thresholds is proposed,which is suitable for multi movement patterns based on the analysis of pedestrian's three indoor movement patterns,i.e. walking,upstairs and downstairs.First,this algorithm identifies the movement pattern (walking,upstairs,or downstairs)using feature points of angular velocity.Then,according to different motion patterns,the corresponding acceleration and angular velocity thresholds as well as the size of time window are matched, and the zero velocity interval is detected by means of double thresholds and time window.The detection tests of different pedestrians'multi movement patterns by the proposed algorithm show that the movement pattern of each step can be identified,and the zero velocity intervals can be detected.Compared with fixed threshold zero-velocity detection,the position accuracy of the proposed algorithm can be improved by over 70%.
作者 贾铮洋 吕志伟 张伦东 高扬骏 周朋进 JIA Zhengyang;LV Zhiwei;ZHANG Lundong;GAO Yangjun;ZHOU Pengjin(Information Engineering University,Zhengzhou 450000,China)
机构地区 信息工程大学
出处 《中国惯性技术学报》 EI CSCD 北大核心 2018年第5期597-602,共6页 Journal of Chinese Inertial Technology
基金 国家重点研发计划(2016YFB0801303)
关键词 零速修正 双重阈值 混合运动模式 行人导航 zero-velocity update double thresholds multi-movement pedestrian navigation
  • 相关文献

参考文献5

二级参考文献63

  • 1汪云甲,张俪文,曹新运.基于盲源分离的脊柱波提取方法[J].中国惯性技术学报,2014,12(4):426-431. 被引量:1
  • 2陈国良,张言哲,杨洲.一种基于手机传感器自相关分析的计步器实现方法[J].中国惯性技术学报,2014,12(6):794-798. 被引量:45
  • 3Chen Wei, Chen Rui-zhi, Chen Xiang, et al. Comparison of EMG-based speed estimation methods in pedestrian dead reckoning[J]. The Journal of Navigation, 2011, 64(3): 265-280.
  • 4Leh L. ZigBee-based intelligent indoor positioning system soft computing[J]. Soft Computing, 2014, 18(3): 443-456.
  • 5Subramanian S P, Sommer J, Zeh F P, et al. PBIL-PDR for scalable bluetooth indoor localization[C]//The Third Inter- national Conference on Next Generation Mobile Applications, Services and Technologies. IEEE, 2009:170-175.
  • 6Massimo F, Francesco P, Aniello C. Hybrid indoor and outdoor location services for new generation mobile terminals[J]. Personal and Ubiqutous Computing, 2014, 18(2): 271-285.
  • 7Jimenez A R, Seco F, Prieto C, et al. A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU[C]//IEEE International Symposium on Intelligent Signal Processing. 2009: 37-42.
  • 8Jin Y, Toh H S, Soh W S, et al. A robust dead-reckoning pedestrian tracking system with low cost sensors[C] //2011 IEEE International Conference on Pervasive Computing and Communications. 2011: 222-230.
  • 9Kim J W, Jang H J, Hwang D H, et al. A step, stride and heading determination for the pedestrian navigation system[J]. Journal of Global Positioning Systems, 2004, 3(1-2): 273-279.
  • 10Lee S, Kim B, Kim H, et al. Inertial sensor-based indoor pedestrian localization with minimum 802.15.4a configuration[J]. IEEE Transactions orr Industrial Infor- matics, 2011, 7(3): 455-466.

共引文献97

同被引文献25

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部