摘要
Pt/BaO/Al_2O_3 catalysts with different BaO loadings prepared from Al_2O_3 nanorods(Pt/BaO/Al_2O_3-nr) and irregular Al_2O_3 nanoparticles(Pt/BaO/Al_2O_3-np) were investigated for NOx storage and reduction(NSR). The Pt/BaO/Al_2O_3 materials derived from Al_2O_3 nanorods always exhibited much higher NOx storage capacity(NSC) over the whole temperature range of 100–400°C than the corresponding Pt/BaO/Al_2O_3-np samples containing the same BaO loading, giving the maximum NSC value of 966.9 μmol/gcatat 400°C, 1.4 times higher than that of Pt/BaO/Al_2O_3-np. Higher catalytic performance of nanorod-supported NSR samples was also observed during lean-rich cyclic conditions(90 sec vs. 5 sec), giving more than 98% NOx conversion at 300–450°C over the Pt/BaO/Al_2O_3-nr sample with 15% BaO loading. To reveal this dependence on the shape of the support during the NSR process, a series of characterization techniques including the Brunauer–Emmett–Teller(BET) method,X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), H_2 temperature programmed reduction(H2-TPR), and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) were also conducted. It was found that intimate contact of Ba–Al and Ba–Pt sites was achieved over the Pt/BaO/Al_2O_3 surface when using Al_2O_3-nr as a support.This strong interaction among the multi-components of Pt/BaO/Al_2O_3-nr thus triggered the formation of surface nitrite and nitrate during the lean period, and also accelerated the reverse spillover of ad-NOxspecies onto the Pt surface, enhancing their reduction and leading to high NSR performance.
Pt/BaO/Al_2O_3 catalysts with different BaO loadings prepared from Al_2O_3 nanorods(Pt/BaO/Al_2O_3-nr) and irregular Al_2O_3 nanoparticles(Pt/BaO/Al_2O_3-np) were investigated for NOx storage and reduction(NSR). The Pt/BaO/Al_2O_3 materials derived from Al_2O_3 nanorods always exhibited much higher NOx storage capacity(NSC) over the whole temperature range of 100–400°C than the corresponding Pt/BaO/Al_2O_3-np samples containing the same BaO loading, giving the maximum NSC value of 966.9 μmol/gcatat 400°C, 1.4 times higher than that of Pt/BaO/Al_2O_3-np. Higher catalytic performance of nanorod-supported NSR samples was also observed during lean-rich cyclic conditions(90 sec vs. 5 sec), giving more than 98% NOx conversion at 300–450°C over the Pt/BaO/Al_2O_3-nr sample with 15% BaO loading. To reveal this dependence on the shape of the support during the NSR process, a series of characterization techniques including the Brunauer–Emmett–Teller(BET) method,X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), H_2 temperature programmed reduction(H2-TPR), and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS) were also conducted. It was found that intimate contact of Ba–Al and Ba–Pt sites was achieved over the Pt/BaO/Al_2O_3 surface when using Al_2O_3-nr as a support.This strong interaction among the multi-components of Pt/BaO/Al_2O_3-nr thus triggered the formation of surface nitrite and nitrate during the lean period, and also accelerated the reverse spillover of ad-NOxspecies onto the Pt surface, enhancing their reduction and leading to high NSR performance.
基金
supported by the National Natural Science Foundation of China (Nos.21673277 and 21637005)
the National Key R&D Program of China (No.2017YFC0211105)
the Science and Technology Program of Tianjin,China (No.16YFXTSF00290)
the K.C.Wong Education Foundation