期刊文献+

Structure Optimization for Echo State Network Based on Contribution 被引量:6

Structure Optimization for Echo State Network Based on Contribution
原文传递
导出
摘要 Echo State Network(ESN) is a recurrent neural network with a large, randomly generated recurrent part called the dynamic reservoir. Only the output weights are modified during training. However, proper balancing of the trade-off between the structure and performance for ESN remains a difficult task. In this paper, a structure optimized method for ESN based on contribution is proposed to simplify its network structure and improve its performance.First, we evaluate the contribution of reservoir neurons. Second, we present a pruning mechanism to remove the unimportant connection weights of reservoir neurons with low contribution. Finally, the new output weights are learned with the pseudo inverse method. The novel optimized ESN, named C-ESN, is tested on a Lorenz chaotic time-series prediction and an actual municipal sewage treatment system. The simulation results show that the C-ESN can have better prediction and generalization performance than ESN. Echo State Network(ESN) is a recurrent neural network with a large, randomly generated recurrent part called the dynamic reservoir. Only the output weights are modified during training. However, proper balancing of the trade-off between the structure and performance for ESN remains a difficult task. In this paper, a structure optimized method for ESN based on contribution is proposed to simplify its network structure and improve its performance.First, we evaluate the contribution of reservoir neurons. Second, we present a pruning mechanism to remove the unimportant connection weights of reservoir neurons with low contribution. Finally, the new output weights are learned with the pseudo inverse method. The novel optimized ESN, named C-ESN, is tested on a Lorenz chaotic time-series prediction and an actual municipal sewage treatment system. The simulation results show that the C-ESN can have better prediction and generalization performance than ESN.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第1期97-105,共9页 清华大学学报(自然科学版(英文版)
基金 supported by the National Natural Science Foundation of China(No.61225016) the Key Project of National Natural Science Foundation of China(No.61533002)
关键词 NEURAL NETWORK STRUCTURAL DESIGN time-series PREDICTION neural network structural design time-series prediction
  • 相关文献

同被引文献43

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部