摘要
本文旨在建立一个包含预防接种并且具有复杂的传播途径的霍乱时滞模型.研究模型稳定性,以时滞为分支参数,通过分析相应特征方程根的分布,得出当时滞大小超过一个阙值时,系统稳定性发生变化,产生Hopf分支.其次利用中心流形定理和规范型理论研究分支方向,分支周期解稳定性和计算公式.最后以2008年津巴布韦霍乱为例进行模型数值模拟.
In this paper, we aim to propose a nonlinear delay cholera model with vaccination including both direct and indirect transmission pathways. We study the local stability of positive equilibrium by analyzing the corresponding characteristic equation. The model exhibits when the time delay exceeds some critical value, the system loses its stability and Hopf-bifurcation occurs. Furthermore, we derive the direction, stability of bifurcating periodic solutions by using the normal form theory and the center manifold theorem. Finally,we carry out numerical simulations to verify the analytical predictions by investigating the2008-2009 cholera outbreak in Zimbabwe.
作者
杨炜明
廖书
YANG WEIMING;LIAO SHU(School of Mathematics and Statistics, Chongqing Technology and Business University,Chongqing 400067,China)
出处
《应用数学学报》
CSCD
北大核心
2018年第6期735-749,共15页
Acta Mathematicae Applicatae Sinica
基金
重庆市基础研究与前沿探索(cstc2017jcyjAX0067
cstc2018jcyjAX0823)
重庆市教委科学技术研究(KJ1706163
KJ1600610)
经济社会应用统计重庆市重点实验室资助项目
关键词
霍乱
时滞
HOPF分支
中心流形定理
周期解
Cholera
time delay
Hopf-bifurcation
center manifold theorem
periodic solution