期刊文献+

含有预防接种的霍乱时滞模型的稳定性和hopf分支分析 被引量:1

Stability and Hopf-bifurcation of a Delay Cholera Model with Vaccination and Insecticides
原文传递
导出
摘要 本文旨在建立一个包含预防接种并且具有复杂的传播途径的霍乱时滞模型.研究模型稳定性,以时滞为分支参数,通过分析相应特征方程根的分布,得出当时滞大小超过一个阙值时,系统稳定性发生变化,产生Hopf分支.其次利用中心流形定理和规范型理论研究分支方向,分支周期解稳定性和计算公式.最后以2008年津巴布韦霍乱为例进行模型数值模拟. In this paper, we aim to propose a nonlinear delay cholera model with vaccination including both direct and indirect transmission pathways. We study the local stability of positive equilibrium by analyzing the corresponding characteristic equation. The model exhibits when the time delay exceeds some critical value, the system loses its stability and Hopf-bifurcation occurs. Furthermore, we derive the direction, stability of bifurcating periodic solutions by using the normal form theory and the center manifold theorem. Finally,we carry out numerical simulations to verify the analytical predictions by investigating the2008-2009 cholera outbreak in Zimbabwe.
作者 杨炜明 廖书 YANG WEIMING;LIAO SHU(School of Mathematics and Statistics, Chongqing Technology and Business University,Chongqing 400067,China)
出处 《应用数学学报》 CSCD 北大核心 2018年第6期735-749,共15页 Acta Mathematicae Applicatae Sinica
基金 重庆市基础研究与前沿探索(cstc2017jcyjAX0067 cstc2018jcyjAX0823) 重庆市教委科学技术研究(KJ1706163 KJ1600610) 经济社会应用统计重庆市重点实验室资助项目
关键词 霍乱 时滞 HOPF分支 中心流形定理 周期解 Cholera time delay Hopf-bifurcation center manifold theorem periodic solution
  • 相关文献

参考文献1

二级参考文献14

  • 1Ma Z E, LiJ. Dynamical Modeling and Analysis of Epidemics[MJ. World Scientific, 2009.
  • 2Capasso V, Serio G. A generalization of the Kennack-McKendrick deterministic epidemic model[J].MathematicalBiosciences, 1978,42(112): 43-6l.
  • 3Liu W M, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].Journal of Mathematical Biology, 1986, 23 ( 2): 187-204.
  • 4Gao SJ, Chen L S, NietoJ J, Torres A. Analysis of a delayed epidemic model with pulse vac?cination and saturation incidence[J]. Vaccine, 2006, 24( 35/36) : 6037-6045.
  • 5Korobeinikov A, Maini P K. Nonlinear incidence and stability of infectious disease models[J] . Mathematical Medicine and Biology, 2005, 22( 2): 113-128.
  • 6Cooke K L. Stability analysis for a vector disease model[J]. Rocky MountainJournal of Mathematics, 1979,9(1): 31-42.
  • 7Xu R, Ma Z E. Stability of a delayed SIRS epidemic model with a nonlinear incidence rate[J] . Chaos Solutions and Fractals, 2009, 41 (5) : 2319-2325.
  • 8Huang G, Takeuchi Y, Ma W B , Wei DJ. Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate[J]. Bulletin of Mathematical Biology, 2010, 72 ( 5) : 1192-1207.
  • 9Beretta E, Takeuchi Y. Convergence results in SIR epidemic models with varying population size[J]. Nonlinear Analysis: Theory, Method and Applications, 1997, 28( 12): 1909-1921.
  • 10Takeuchi Y, Ma W B, Beretta E. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J]. Nonlinear Analysis: Theory, Methods and Applications, 2000,42(6): 931-947.

共引文献10

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部