摘要
通过在时间方向引入一个平均算子,对一维边界阻尼波动方程构造了一个等距网格上的半离散有限差分格式.利用离散乘子法,证明了对偶系统半离散格式的一致可观测不等式,进而证明了原系统半离散格式的一致指数稳定性.数值实验验证了理论结果.
A semi-discretized finite difference scheme on equidistant grids is proposed for 1D wave equation with damped boundary by introducing an average operator in time direction. The discretized multiplier method is adopted to prove the uniformly observable inequality of semi-discretized scheme for conjugate system. The uniformly exponential stability of semi-discretized scheme for original system is demonstrated further. A numerical experiment verifies the theoretical results.
作者
刘建康
武贝贝
LIU JIANKANG;WU BEIBEI(School of Mathematical Sciences,Shanxi University,Taiyuan 030006,China)
出处
《应用数学学报》
CSCD
北大核心
2018年第6期832-845,共14页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金面上(11772177)资助项目
关键词
波动方程
阻尼边界
有限差分
一致指数稳定
一致可观测不等式
wave equation
damped boundary
finite difference
uniformly exponential stability
uniformly observable inequality