期刊文献+

基于重组酶和终止子的状态调控开关设计 被引量:2

Design of recombinase and terminator-based genetic switches for cell state control
原文传递
导出
摘要 合成生物学研究常用基因开关来调控细胞的状态以实现相应功能。已有的基因开关往往需要持续的输入信号来维持特定的开关状态,开关功能的维持需要持续消耗能量,并且对扰动较为敏感。文中利用了位点特异性重组酶的倒位效应反转终止子,构建了一种转录层次的状态调控开关,使得脉冲信号即可触发开关状态改变,并在下一次信号来临前稳定维持当前状态。应用自下而上的工程化思想,文中先后对重组酶和终止子进行了单独表征和组合表征,探究了二者之间的相互影响,筛选出了相互兼容的组合,成功实现了细胞的单次、二次状态切换。最后,此开关成功地被用于构建生物七段译码器,显示出了其较好的应用潜力。 Various genetic switches have been developed to let engineered cells perform designed functions.However,a sustained input is often needed to maintain the on/off state,which is energy-consuming and sensitive to perturbation. Therefore,we developed a set of transcriptional switches for cell states control that were constructed by the inversion effect of site-specific recombinases on terminators.Such a switch could respond to a pulse signal and maintain the new state by itself until the next input.With a bottom-up design principle,we first characterized the terminators and recombinases.Then the mutual interference was studied to select compatible pairs,which were used to achieve one-time and two-time state transitions.Finally,we constructed a biological seven-segment display as a demonstration to prove such switch's immense potential for application.
作者 张嵩元 邱建辉 王宣 董一名 李昱龙 张益豪 欧阳颀 Songyuan Zhang;Jianhui Qiu;Xuan Wang;Yiming Dong;Yulong Li;Yihao Zhang;Qi Ouyang(Center for Quantitative Biology and Center for Life Sciences,Peking University,Beijing 100871,China;Center for Life Sciences,Tsinghua-Peking Center for Life Sciences,Tsinghua University,Beijing 100084,China)
出处 《生物工程学报》 CAS CSCD 北大核心 2018年第12期1874-1885,共12页 Chinese Journal of Biotechnology
基金 中央高校教育教学改革拔尖人才培养项目资助~~
关键词 位点特异性重组酶 终止子 调控开关 状态转换 site-specific recombinase,terminator,genetic switch,state transition
  • 相关文献

参考文献1

二级参考文献64

  • 1Mitchel J, Zheng D, Busby S, et al. Identification and analysis of extended -10 promoters in Escherichia coli. Nucleic Acids Res, 2003, 31(16): 4689-4695.
  • 2Browning DF, Busby SJ. The regulation of bacterial transcription initiation. Nat Rev Microbiol, 2004, 2: 57-65.
  • 3Travers AA, Burgess RR. Cyclic re-use of the RNA polymerase sigma factor. Nature, 1969, 222: 537-540.
  • 4Gruber TM, Gross CA. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol, 2003, 57: 441-466.
  • 5Murakami K, Masuda S, Campbell EA, et al. Structural basis of transcription initiation: an RNA polymerase holoenzyme/DNA complex. Science, 2002, 296: 1285-1290.
  • 6Merrick MJ. In a class of its own--the RNA polymerase sigma factor σ^54 (σN). Mol Microbiol, 1993, 10: 903-909.
  • 7Gardan R, Rapoport G, Debarbouille M. Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis. Mol Microbiol, 1997, 24: 825-837.
  • 8Debarbouille M, Verstraete IM, Kunst F, et al. The Bacillus subtilis sigL gene encodes an equivalent of σ^54 from gram-negative bacteria. Proc Natl Acad Sci USA, 1991, 88: 9092-9096.
  • 9Buck M, Gallegos MT, Studholme D J, et al. The bacterial enhancer-dependent σ^54 (σ^N) transcription factor. J Bacteriol, 2000, 182(15): 4129-4136.
  • 10Wang L, Gralla JD. Multiple in vivo roles for the 212-region elements of sigma 54 promoters. J Bacteriol, 1998, 180: 5626-5631.

共引文献7

同被引文献15

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部