期刊文献+

保温温度对Zr56Co28高强合金微观组织和力学性能的影响

Effects of Heat Preservation Temperature on Microstructure and Mechanical Properties of Zr56Co28 Alloy
下载PDF
导出
摘要 利用XRD、SEM、拉伸力学试验等手段,研究了不同保温温度下Zr56Co28高强合金的微观组织和力学性能。结果表明:对Zr56Co28高强合金进行较低温度保温时,B33相颗粒发生长大,颗粒外形由分散的小块状与条形相连的小块共存;随保温温度增加,颗粒发生显著细化,B33相含量降低,Zr56Co28高强合金力学性能表现出先增大后降低的变化趋势,在保温温度850℃时力学性能达到最大值,此时合金的屈服强度、抗拉强度和伸长率分别为1012 MPa、1224 MPa和8.6%。Zr56Co28高强合金断口区域存在大量解理面,并且有众多的二次裂纹出现。随着保温温度升高,延性断裂区面积降低,断口部位主要表现为延性撕裂状态。 The microstructure and mechanical properties of Zr56Co28 high strength alloy at different holding temperature were studied by means of XRD,SEM and tensile mechanical test.The results show that,when the Zr56Co28 high-strength alloy is heated at low temperature,the phase B33 particles grow up,and the shape of particles coexists with strip connected small block shape and small dispersed block shape.With the increase of heat preservation temperature,the content of the B33 phase decreases significantly.The mechanical properties of the Zr56Co28 high strength alloy shows a tendency of first increasing and then decreasing.The mechanical properties reaches the maximum at 850℃,and the yield strength,tensile strength and elongation of the alloy are 1012MPa,1224MPa and 8.6%,respectively.There are a lot of cleavage surfaces and many secondary cracks in the fracture area of the Zr56Co28 high strength alloy.With the increase of holding temperature,the area of ductile fracture zone to decreases,and the fracture site is mainly characterized by ductile tearing.
作者 原涛 赵跃文 YUAN Tao;ZHAO Yuewen(Department of Mechanical Engineering,Taiyuan Institute of Technology,Taiyuan 030008,China)
出处 《热加工工艺》 CSCD 北大核心 2018年第22期237-239,247,共4页 Hot Working Technology
关键词 Zr-Co合金 保温温度 微观组织 力学性能 Zr-Co alloy heat preservation temperature microstructure mechanical properties
  • 相关文献

参考文献3

二级参考文献65

  • 1赵荣达,朱景川,来忠红,刘勇.非均匀弹性能作用下Fe-Al合金匀相转变动力学的微观相场研究[J].稀有金属材料与工程,2012,41(S2):206-209. 被引量:2
  • 2赵荣达,来忠红,李飞,朱景川,张宝友.Fe-23Al合金有序畴表征和形成机制[J].稀有金属材料与工程,2012,41(S2):628-631. 被引量:2
  • 3Allen S, Cahn J W. Mechanisms of phase transformation within the miscibility gap of Fe-rich Fe-A1 alloys[J]. Acta Mater, 1976,24(6) :425.
  • 4Schneider A, Falat L, Sauthoff G. Microstructures and me- chanical properties of Fea Al-based Fe-A1-C alloys[J]. Inter- metallics, 2005,13(12) : 1322.
  • 5Srdjan M, Martin P. Microstructure and mechanical proper- ties of directionally solidified Fe-A1-Nb eutectie[J]. Inter-metallics, 2008,16 (10) ; 1322.
  • 6Zhao Rongda, Zhu Jingchuan, Liu Yong, et al. The phase field investigation of B2 (FeA1) phase antisite defect during homogenous transformation of Fe-24A1 alloy[J]. J Mater Sci,2012,47 3376.
  • 7Zhao Rongda, Zhu Jingchuan, Lai Zhonghong, et al. For- mation of nanometer coherent structures during spinodal de- composition and ordering coexistence phase transformation in Fe-24A1 alloys[J]. J Shanghai Jiaotong University (Sci), 2012,17(4) : 461.
  • 8Thallapally P K, Lloyd G 0, Wirsig T B, et al. Organic crystals absorb hydrogen gas under mild conditions]]]. Chern Cornmun, 2005, 42:5272.
  • 9Luo W, Ronnebro E. Towards a viable hydrogen storage system for transportation application[J]. J Alloys Compd , 2005, 404406: 392.
  • 10Johnston B, Mayo M C, Khare A. Hydrogen: The energy source for the 21st century[J]. Technovation,2005,25(6) :569.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部