期刊文献+

向量场一致性约束的对立颜色特征匹配 被引量:1

Opponent Color Feature Matching Constrained by Vector Field Consistency
下载PDF
导出
摘要 针对Color SIFT类特征提取算法进行特征匹配时误匹配点对多的问题,引入向量场一致性约束改进了Opponent SIFT的匹配算法。首先,在对立颜色空间的3个通道中采用SIFT算子进行特征描述,构建384维特征向量,增强颜色对比效果;然后,利用最近邻距离比率进行粗匹配,降低整体匹配失效的风险;最后,采用向量场一致性约束提纯,规避RANSAC算法因局部最优导致正确点对丢失的缺陷。实验结果表明:在处理图像综合变化时,本文算法较SIFT结合RANSAC的算法,提高了匹配精度,鲁棒性更好。 According to a large number of mismatched point pairs in image feature matching with the Color SIFT extracting algorithms,this paper introduces vector field consistency constraint to improve an Opponent SIFT matching algorithm.First,SIFT operator is used to describe local feature in 3 channels of opponent color space and 384 dimensional feature vectors are constructed to enhance the color contrast effect.Then,the nearest neighbor distance ratio is utilized to make coarse matching and reduce the overall failure risk of matching.Finally,vector field consistency constraint is used to purify and evade the defect of the correct point lost due to local optimization caused by the RANSAC algorithm.Experiment results show that when dealing with comprehensive image changes,the proposed algorithm improves the matching accuracy and robustness compared with the SIFT with RANSAC algorithm.
作者 薄单 李宗春 蓝朝桢 乔涵文 Bo Dan;Li Zongchun;Lan Chaozhen;Qiao Hanwen(Institute of Geospatial Information,Information Engineering University,Zhengzhou 450001,China;Luoyang Electronic Equipment Testing Center,Luoyang 471003,China)
出处 《测绘科学与工程》 2018年第4期59-65,共7页 Geomatics Science and Engineering
关键词 颜色特征 特征匹配 向量场一致性约束 尺度不变特征变换 随机抽样一致性 color feature feature matching vector field consistency constraint SIFT RANSAC
  • 相关文献

参考文献2

二级参考文献15

  • 1Harris C, Stephens M. A combined corner and edge detector [C]//Fourth Alvey Vision Conference. [ s. l. ]: [ s. n. ]. 1988:147-151.
  • 2Lowe D. Distinctive image features from scale-invariant key points [J]. International Journal of Computer Vision, 2004. 60(2) :91-110.
  • 3Fischler M, Bolles R. Random sample consensus: A para- digm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM,1981, 24(6):381-395.
  • 4Hu Xuelong, Tang Yingcheng, Zhang Zhenghua . Video ob- ject matching based on sift algorithm[C]// Conference Neural on Networks & Signal Processing. Nanjing, China: IEEE, 2008:412-415.
  • 5Lowe D. Object recognition from local features from scale- invariant features [C]//International Conference on Comput- er Vision. Kerkyra, Greece: IEEE, 1999 :1150-1157.
  • 6Mikolajczyk K,Sehmid C. An affine invariant interest point detector [J ]. European Conference of Computer Vision, 2002, 15(3);128-130.
  • 7Beis J S, Lowe D G. Shape indexing using approximate nea- rest-neighbour search in high-dimensional spaces [ C]//Con- ference on Computer Vision and Pattern Recognition. Wash- ington D C, USA: IEEE Computer Society, 1997: 1000-1006.
  • 8Wang Wei, Hong Jun, Tang Yiping, Image matching for ge omorphic measurement based on sift and RANSAC methods [C]// International Conference on Computer Science and Software Engineering. Wuhan. Hubei: IEEE, 2008: 317- 320.
  • 9张跃飞.车载摄像机数字稳像技术研究[M].成都:电子科技大学.2011.
  • 10KUMAR S, AZARTASH H, BISWAS M, et al. Real- time affine global motion estimation using phase corre-lation and its application for digital image stabilization [J]. IEEE Trans hnage Process,2011,20(12:3406- 3418.

共引文献40

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部