期刊文献+

基于局部特征加权编码的带钢表面缺陷分类 被引量:3

Strip Surface Defect Image Classification based on Local Feature Weighted Coding Algorithm
下载PDF
导出
摘要 针对带钢表面缺陷的几何与纹理分布情况复杂多变、类内缺陷分布形式不固定等特点,提出了一种基于局部特征加权编码的带钢表面缺陷特征提取算法。首先,利用SURF算子提取带钢表面缺陷图像的局部特征。然后,对这些特征进行统计分析后提取能够表征缺陷的关键特征。最后利用TFIDFIG算法和硬量化编码算法对这些关键特征进行加权编码,构造各种不同类型的缺陷特征表示形式。通过对实际带钢生产线上采集的缺陷数据进行验证分析,相比于已有分类算法,该算法提取的缺陷特征能够有效地提高缺陷的识别率,平均识别率达到了99.45%。 Allowing for the strip surface defect images with the typical characteristics of complex geometry and texture distribution, unfixed distribution form of intra-class defects, a strip surface defect feature extraction method based on local feature weighted coding algorithm is proposed. Firstly, the local features of the strip surface defect images are extracted by using the SURF operator. Secondly, the key features are calculated to represent the defects by counting and analyzing these features. Lastly, these key features are coded by using TFIDFIG algorithm and hard vector quantization coding algorithm to establish the feature representation of the various types of defects. Through verifying and analyzing the proposed method on the defect data from the actual strip production line, compared with the existing classification algorithm, the feature extraction method effectively improves defect recognition rate, and the average recognition rate reaches to 99.45%.
作者 刘坤 张阿龙 屈尔庆 董砚 LIU Kun;ZHANG A-long;QU Er-qing;DONG Yan(Hebei University of Technology,College of Control Science and Technology,Tianjin300130,China)
出处 《控制工程》 CSCD 北大核心 2018年第12期2239-2244,共6页 Control Engineering of China
基金 国家自然科学青年基金项目(61403119) 河北省自然科学青年基金(F2014202166)
关键词 带钢表面缺陷 局部特征提取 加权编码 缺陷分类 Strip surface defect local feature extraction weighted coding defect classification
  • 相关文献

参考文献4

二级参考文献36

  • 1李文峰,徐科,杨朝霖,高阳,周鹏.中厚板表面缺陷在线检测系统的分类器设计[J].钢铁,2006,41(4):47-50. 被引量:5
  • 2宋强,徐科,徐金梧.基于结构谱的中厚板表面缺陷识别方法[J].北京科技大学学报,2007,29(3):342-345. 被引量:7
  • 3Daugman J G. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research, 1980, 20(10): 847-856.
  • 4He X F, Niyogi P. Locality preserving projections. Advances in Neural Information Processing Systems 18. Vancouver: MIT Press, 2005.
  • 5Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press, 2004.
  • 6Lades M, Vorbruggen J V, Buhmann J, Lange J, yon der Malsburg C, Wurtz R P. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 1993, 42(3): 300-311.
  • 7Roweis S T, Saul L K. Nonlinear dimensionality reduction by loacally linear embedding. Science, 2000, 290(5500): 2323-2326.
  • 8Belkin M, Mikhail P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems 14. Cambridge: MIT Press, 2002.
  • 9He X F. Locality Preserving Projections [Ph. D. dissertation], The University of Chicago, USA, 2005.
  • 10Zhang J P, Shen C, Feng J F. Classification with the hybrid of manifold learning and Gabor wavelet. In: Proceedings of the 3rd International Symposium on Neural Networks. Berlin: Springer-Verlag, 2006. 1346-1351.

共引文献33

同被引文献20

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部