期刊文献+

基于深度学习的疲劳驾驶状态检测方法 被引量:9

A Method of Fatigue Driving State Detection Based on Deep Learning
下载PDF
导出
摘要 目前疲劳驾驶检测算法大多基于单一的人工提取疲劳状态特征实现,且大部分算法结构复杂、鲁棒性低。为此,文章提出一种基于深度学习的疲劳检测方法,它采用卷积神经网络和Landmark算法来实现人脸图像特征点的自动提取,并使用SVM算法对疲劳特征进行分类,最后基于Perclos算法实现视频流图像的疲劳状态检测。实验结果表明,该方法能较好地提取疲劳特征,实现实时疲劳检测,且检测精度达96.8%。 Current domestic and overseas fatigue-recognition algorithms are implemented using fatigue features which are mostly singular and man-made.Most of those algorithms have complex structure,low efficiency and weak adaptability in face of driver's individual behavior.habit.To this end,this paper put forward a fatigue recognition algorithm based on deep learning.Firstly,the face image feature points are automatic extracted using convolutional neural network and landmark algorithm.Then the SVM algorithm is used to classify the fatigue characteristics.Finally,the fatigue state of the video stream image is detected based on the Perclos algorithm: The experimental results show that this method can obtain good fatigue characteristics,realize real-time fatigue detection,and its detection accuracy is 96.8%.
作者 熊群芳 林军 岳伟 XIONG Qunfang;LIN Jun;YUE Wei(CRRC Zhuzhou Institute Co.,Ltd.,Zhuzhou,Hunan 412001,China)
出处 《控制与信息技术》 2018年第6期91-95,共5页 CONTROL AND INFORMATION TECHNOLOGY
基金 国家重点研发计划(2018YFB1201600)
关键词 疲劳检测 深度学习 卷积神经网络 Perclos算法. fatigue detect deep learning convolutional neural network Perclos algorithm
  • 相关文献

参考文献3

二级参考文献29

  • 1Correa A G, Orosco L, Laciar E. Automatic detection of drowsi- ness in EEG records based on muhimodal analysis[J]. Medical Engineering g: Physics, 2014,36 (2) : 244-249.
  • 2Li G,Chung W Y. Detection of Driver Drowsiness Using Wave- let Analysis of Heart Rate Variability and a Support Vector Ma- chine Classifier[J] Sensors,2013,13(12) : 16494-16511.
  • 3Hinton G, Salakhutdinov R. Reducing the Dimensionality of Da- ta with Neural Networks[J]. Science,S006,313(5786):504 507.
  • 4Hinton G E, Osindero S. A Fast Learning Algorithm for Deep Belief Nets[J] Neural Computation,2006,18:1527-1554.
  • 5Hinton G. Trainging Products o{ Experts by Minimizing Cont- rastive Divergence[J]. Neural Computation, 2002, 14 (8) : 1771- 1800.
  • 6Neal R M, Hinton G E. A View of the EM Algorithm that Justi- fies Incremental, Sparse and other Variants[M] // Learning in Graphical Models, 1998,355-368.
  • 7Dasgupta A,George A, Happy SL, et al. A Vision-Based System {or Monitoring the Loss of Attention in Automotive Drivers[J]. IEEE Transactions on Intelligent Transportation Systems: 2013,14(4) : 1825-1838.
  • 8Cyganek B,Gruszczynski S. Hybrid computer vision system for drivers' eye recognition and fatigue monitoring[J]. Neural com- putation, 2014,126 (SI) : 78-94.
  • 9夏芹,宋义伟,朱学峰.基于PERCLOS的驾驶疲劳监控方法进展[J].自动化技术与应用,2008,27(6):43-46. 被引量:19
  • 10谢正洋,胡丹峰,王加俊.无创血氧饱和度的测量及无线监测系统的研制[J].中国仪器仪表,2009(4):65-67. 被引量:14

共引文献13

同被引文献59

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部