期刊文献+

N_2O/HTPB固液发动机燃烧室结构对药柱燃面退移特性的数值模拟

Influence of chamber structure on regression rate of solid fuel in N_2O/HTPB hybrid rocket motor
下载PDF
导出
摘要 针对采用N_2O/HTPB推进剂的某固液火箭发动机,分析研究燃烧室长径比、前燃室长度、补燃室长度以及喉径等结构参数对固体燃料热解表面燃面退移速率的影响。通过建立一种基于流场与固体燃料之间耦合传热和PDF燃烧模型的数值计算方法,并经算例验证后,说明此数值模拟方法的合理性和正确性。因此,应用此数值模拟方法分别计算了燃烧室各结构参数对固体燃料热解表面退移速率的影响:药柱长径比对燃面退移速率影响较大,随着药柱内径的不断增大,退移速率逐渐减小;随着前燃室长度的增大,燃面退移速率也相应增加,但幅度较小;而补燃室长度以及喉径对退移速率基本无影响。适当增加补燃室长度,可增强氧化剂与燃料热解气体的掺混效果,从而提高燃烧效率。 The effect of chamber structure parameters on regression rate of N20/HTPB propellant in hybrid rocket motor has been studied by the numerical simulations method,which is based on thermal coupling at burning face and PDF combustion model, such as the draw ratio,the pre-chamber,post-chamber,the throat diameter and so on.An illustrative example proves that the method is reasonable and feasible.The results show that the draw ratio of grain has a great impact on the regression rate.As the draw ratio increases,the regression rate decreases.In comparison,the pre-chamber,post-chamber and the throat diameter have little effect on regression rate.The appropriate length of post-chamber can enhance the extent of mixing for pyrolysis gases of the oxidants and fuels, and hence the combustion efficiency has been improved.
作者 张梦龙 张悦 徐松林 ZHANG Menglong;ZHANG Yue;XU Songlin(PLA 91550,Dalian l16023,China)
机构地区 中国人民解放军
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2018年第6期715-720,共6页 Journal of Solid Rocket Technology
关键词 固液火箭发动机 退移速率 燃烧室结构 数值模拟 hybrid rocket motor regression rate chamber structure numerical simulation
  • 相关文献

参考文献4

二级参考文献20

  • 1孙得川,杜新,汪亮.PE燃料热解过程对H_2O_2-PE固液发动机点火的影响[J].固体火箭技术,2006,29(5):346-349. 被引量:7
  • 2杨玉新,胡春波,孙得川,蔡体敏,陈灏,刘洋.基于流-固耦合的混合火箭发动机固体燃料表面退移速率计算[J].固体火箭技术,2007,30(3):214-218. 被引量:7
  • 3Marxman G A, Gilbert M. Turbulent boundary layer combustion in the hybrid rocket [ R ]. Ninth International Symposium on Combustion, Academic Press, New York, 1963:371-383.
  • 4Chiaverini M J, Serin N, Johnson and et al. Regression rate behavior for hybrid rocket solid fuels [ J ]. Journal of Propulsion and Power, 2000,16 ( 1 ) : 125 - 132.
  • 5Arisawa H, Brill T B. Flash pyrolysis of hydroxyl terminated poly-butadiene(HTPB). I :Implications of kinetics to combustion of organic polymers [ J ]. Combustion and Flame, 1996,106(1-2).
  • 6孙得川.液体火箭发动机性能化学平衡/化学动力学分析[R].博士后研究工作报告,2003.
  • 7Strand L D,Jones M D,Ray R L,Cohen N S.Characterization of hybrid rocket internal heat flux and HTPB fuel pyrolysis[R].AIAA 94-2876.
  • 8Antonis Antonioul, Kazim M Akyuzlu. A physics based com- prehensive mathematical model to predict motor performance in hybrid rocket propulsion systems [ R]. AIAA 2005-3541.
  • 9Martin J Chiaverini, George C Heating, Yeu-Cherng Lu, Kuo Kenneth K. Pyrolysis behavior of hybrid rocket solid fuels un- der rapid heating conditions[ R]. AIAA 97-3078.
  • 10Martin J Chiaverini, Nadir Serin, David K Johnson, Kuo Kenneth K. Thermal pyrolysis and combustion of HTPB- based solid fuels for hybrid rocket motor applications [ R ]. AIAA 96-2845.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部