摘要
文章提出一种新的称之为条件配置抽样的抽样设计:通过不断产生配置样本,直到其样本量实现了预定容量n时样本才被接受。一方面围绕建立该设计基本理论展开探讨研究,给出了条件配置抽样一阶、二阶包含概率的形式表达式;另一方面在经典的线性超总体模型下,从数值上说明与条件Possion抽样比较,条件配置抽样在精度和实施上的优良性。
This paper presents a new sampling design called conditional collocated sampling: By continuously generating collocated sampling, the samples are not accepted until their sample sizes achieve a predetermined capacity n. On the one hand,based on the establishment of the basic theory of the design, this paper makes a discussion and study to offer the formal expressions of the first-order and second-order inclusion probability of conditional configuration sampling. On the other, in the classical linear super-population model, it is numerically illustrated that conditional allocation sampling is superior in accuracy and implementation compared with conditional Possion sampling.
作者
闫在在
常帅
郝晓彤
汤荣
Yan Zaizai;Chang Shuai;Hao Xiaotong;Tang Rong(College of Science,Inner Mongolia University of Technology,Hohhot 010051,China)
出处
《统计与决策》
CSSCI
北大核心
2018年第24期79-82,共4页
Statistics & Decision
基金
国家自然科学基金资助项目(11361036)
内蒙古自然科学基金面上项目(2017MS0101)
关键词
条件Poisson抽样
配置抽样
条件配置抽样
conditional Poisson sampling
collocated sampling
conditional collocated sampling