摘要
考虑利用广义交替方向法(GADMM)求解线性约束两个函数和的最小值问题,其中一个函数为凸函数,另一个函数可以表示为两个凸函数的差.对GADMM的每一个子问题,采用两个凸函数之差算法中的线性化技术来处理.通过假定相应函数满足Kurdyka-Lojasiewicz不等式,当增广Lagrange(拉格朗日)函数的罚参数充分大时,证明了GADMM所产生的迭代序列收敛到增广Lagrange函数的稳定点.最后,给出了该算法的收敛速度分析.
The generalized alternating direction method of multipliers (GADMM)for the minimization problems of the sum of 2 functions with linear constraints was considered,where one function was convex and the other can be expressed as the difference of 2 convex functions. For each subproblem in the GADMM,the linearization technique in the convex function difference algorithm was employed.Under the assumptions that the associated functions satisfy the Kurdyka-Lojasiewicz inequality,the sequence generated with the GADMM converges to a critical point of the augmented Lagrangian function,while the penalty parameter in the augmented Lagrangian function is sufficiently large.At last,the convergence rate of the algorithm was established.
作者
王欣
郭科
WANG Xin;GUO Ke(School of Mathematics and Information,China West Normal University, Nanchong ,Sichuan 537002,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2018年第12期1410-1425,共16页
Applied Mathematics and Mechanics
基金
国家自然科学基金(11571178
11801455)
2018年国家级大学生创新创业训练计划项目(201810638002)~~