期刊文献+

基于特征向量的煤矿领域实体关系抽取

Extraction of Entity Relationship in Coal Mine Based on Feature Vector
下载PDF
导出
摘要 煤炭是我国的基础能源,煤矿安全是煤矿生产的重中之重。一个煤矿领域的知识图谱可以很好地帮助煤矿工作人员分析常见煤矿事故。知识图谱是一种揭示实体之间关系的语义网络,通过对原始数据进行关系抽取、质量评估,从而对现有知识图谱进行更新。通过引入因子图模型,基于特征向量对煤矿领域实体间的发生关系进行抽取,并结合远程监督方法及启发式规则降低实体关系抽取的人工标注量及噪声比率。实验结果表明,上述方法对于煤矿领域"发生"关系的抽取具有较高的准确率。 Coal is the basic energy of our country,coal mine safety is the most important part of coal production.A knowledge map of the coal field can help the coal mine workers to analyze the common coal mine accidents.Knowledge graph is a semantic network that reveals the relationship between entities.It updates the existing knowledge graph by extracting the relationship from the original data and evaluating its quality.Introduces a factor graph model to extract the occurrence relationship between entities in the coal mine field based on eigenvectors, and remote monitoring method and heuristic rules are combined to reduce the manual annotation and noise ratio of entity relationship extraction.The experimental results show that this method has a high accuracy in extracting the occurrence relationship in the field of coal mine.
作者 伊海迪 石一鸣 杨博 杜新玉 刘旭红 YI Hai-di;SHI Yi-ming;YANG Bo;DU Xin-yu;LIU Xu-hong(College of Computer Science,Beijing Information Science and Technology University,Beijing 100000)
出处 《现代计算机》 2018年第24期42-46,共5页 Modern Computer
关键词 实体关系抽取 远程监督 因子图模型 启发式规则 Entity Relation Extraction Remote Supervision Factor Graph Model Heuristic Rules
  • 相关文献

参考文献1

二级参考文献12

  • 1SUGIYAMA K, KAN M Y. Scholarly paper recommendation via user's recent research interests [ C ]//HUNTER J, CARL L, GILES C L, et al. Proceedings of the 10th annual joint conference on digital libraries. New York: ACM, 2010: 29-38.
  • 2SARWAR B M, KARYPIS G, KONSTAN J A, et al. Item-based collaborative filtering recommendation algorithms[ C]//SHENV Y, SAITO N, LYU M R, et al. Proceedings of the 10th international world wide web conference. New York: ACM, 2001 : 285 -295.
  • 3NAAK A, HAGE H, AIMEUR E. A multi-criteria collaborative filtering approach for research paper recommendation in Papyres [ C ]//BABIN G, KROPF P, WEISS M. Proceedings of the 4th International MCETECH Conference on E-technologies, as Lecture Notes in Business Information Processing (LNBIP) vol. 26. Heidelberg: Springer Berlin Heidelberg, 2009: 25-39.
  • 4KSCHISCHANG F R, FREY B J, LOELIGER H-A. Factor graphs and the sum-product algorithm [ J ]. IEEE Transactions on Information Theory, 2001, 47(2): 498-519.
  • 5TANG Jie, JIN Ruoming, ZHANG Jing. A topic modeling approach and its integration into the random walk framework for academic search[ C ]//GIANNOTYI F, GUNOPULOS D, TURINI F, et al. Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. Los Alamitos: IEEE Computer Society, 2008: 1055-1060.
  • 6TANG Jie, SUN Jimeng, WANG Chi, et al. Social influence analysis in large-scale networks [ C ]//ELDER J, FOGELMAN F S, FLACH P, et al. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 807-816.
  • 7BISHOP C M. Pattern recognition and machine learning[ M]. Berlin: Springer, 2006: 359-422.
  • 8YAN Erjia, DING Ying. Library and information science (LIS) as we see it: an overview at the state and country level from 1965-2010[ C]//Proceedings of the American Society for Information Science and Technology. Malden MA, USA: Wiley Subscription Services, Inc ,2011 : 1-8.
  • 9MOOIJ J M. libDAI: A free and open source C++library for discrete approximate inference in graphical models[ J ]. Journal of Machine Learning Research, 2010, 11: 2169-2173.
  • 10MOOIJ J M. libDAI-A free and open source C + +library for discrete approximate inference in graphical models [ EB/OL ]. [ 2013-01-14 ]. http ://es. rn. nl/- jorism/libDAI/.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部