期刊文献+

基于改进粒子群算法的PIDNN解耦控制研究(英文) 被引量:5

PID neural network decoupling control based on improved particle swarm optimization
下载PDF
导出
摘要 对于具有非线性、强耦合、大迟滞特点的多输入多输出的非线性系统,传统的控制方法无法对其进行精确解耦,导致控制精度较低。提出一种基于免疫机制的改进粒子群算法,并用此方法对PID神经网络权值进行优化,形成新型PID神经网络控制器。利用两个PID神经网络控制器对双输入双输出耦合系统进行控制以减弱系统的耦合影响。通过仿真结果表明:相对于传统PID解耦控制,该算法具有更好的动态和静态特性。可为控制领域中的解耦问题提供一定的参考。 The traditional control method cannot accurately decouple the multi-input and multi-output (MIMO) nonlinear system due to the characteristics of heavy delay,and strong coupling,which leads to lower control precision.An improved particle swarm optimization (PSO)algorithm on basis of the immune mechanism was proposed in this study,and this algorithm was used to optimize PID neural network (PIDNN)weights to form a new PIDNN controller.Two new PIDNN controllers were used to control the 2-in-2out coupling system to reduce the coupling effect of the system.The simulation results showed that this method exhibited better dynamic and static characteristics than traditional PID decoupling control algorithm.It could provide some references for the decoupling problem in the field of control.
作者 周建新 李钊 宋顶利 石琳 Jian-xin ZHOU;Zhao LI;Ding-li SONG;Lin SHI(College of Electrical Engineering,North China University of Science and Technology,Tangshan 063000,China;College of Science,North China University of Science and Technology,Tangshan 063000,China;College of Information Engineering,North China University of Science and Technology,Tangshan 063000,China)
出处 《机床与液压》 北大核心 2018年第24期74-79,共6页 Machine Tool & Hydraulics
基金 The Key Project of Hebei Education Department(ZD2015059)~~
关键词 解耦控制 PID神经元网络 粒子群算法 免疫算法 Decoupling control PID neural network Particle swarm optimization Immunity algorithm
  • 相关文献

参考文献6

二级参考文献39

共引文献88

同被引文献49

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部