期刊文献+

露天采场验收测量的SIFT-ICP点云配准方法

SIFT-ICP point cloud registration method for open pit acceptance measurement
下载PDF
导出
摘要 露天采场验收测量是露天矿山测量中的重要工作,传统的散点式测量方式如GPS、全站仪等逐渐向密集的点云测量方式转变,然而多期数据的坐标关联与统一需要点云数据的精确配准。为此,文中在分析以往ICP配准算法的存在不足的基础上,提出了一种改进的SIFT-ICP配准方法。该算法首先对预处理后的点云进行Delaunay三角剖分建模及栅格化,然后对栅格化后的图像实施SIFT算法的粗配准,最后根据粗配准的结果进行ICP算法的精确配准。实验结果表明,该方法能够加快ICP算法的迭代收敛,并提高了配准的精度。 Open pit acceptance measurement was an important task in open pit mine measurement.Traditional scatter measurement methods such as GPS and total station were gradually shifting to dense point cloud measurement. However,the coordinate association and uniformity of multi-period data required accurate registration of point cloud data. To this end,in the paper,based on the analysis of the existing ICP registration algorithm,an improved SIFT-ICP registration method was proposed. Firstly,Delaunay triangulation modeling and rasterization were carried out on the pre-processed point cloud,and then the coarse registration of the SIFT algorithm was carried out on the rasterized image. Finally,the ICP algorithm was carried out precise registration according to the result of coarse registration. Experimental results showed that the iterative convergence of ICP algorithm was accelerated and the accuracy of registration was improved.
作者 何群 安骞 王森 刘善军 毛亚纯 He Qun;An Qian;Wang Sen;Liu Shanjun;Mao Yachun(School of Resources and Civil Engineering,Northeastern University,Shenyang 110819,China;Hebei Construction Material Vocational and Technical College,Qinhuangdao 066004,China)
出处 《矿山测量》 2018年第6期68-72,共5页 Mine Surveying
基金 国家自然科学基金项目(41771404)
关键词 露天采场 验收测量 点云配准 SIFT-ICP open-pit mine acceptance measurement point cloud registration SIFT-ICP
  • 相关文献

参考文献3

二级参考文献32

  • 1邓非,张祖勋,张剑清.利用激光扫描和数码相机进行古建筑三维重建研究[J].测绘科学,2007,32(2):29-30. 被引量:50
  • 2Vàrady T, Martin R R, Cox J. Reverse engineering of geometric models-an introduction[J]. Computer Aided Design, 1997,29(4) :255-268.
  • 3Besl P J, McKay N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14 (2): 239-256.
  • 4Chen Y, Medioni G. Object modeling by registration of multiple range images[A]. Proc IEEE Int'l Conf on Robotics and Automation[C]. 1991. 2724-2729.
  • 5Fan K C, Tsai T H. Optimal shape error analysis of the matching image for a free-form surface [J]. Robotics and Computer Integrated Manufacturing,2001,17: 215-222.
  • 6Li Qingde, Griffiths J G. herative closest geometric objects registration[J]. Computers and Mathematics wit h Applications, 2000,40: 1171 - 1188.
  • 7Mihailo R, Djordje B. Efficient registration of NURBS geometry[J]. Image and Vision Computing,1997,15:925-935.
  • 8Dorai C, Jain A K. Registration and integration of multiple object views for 3D model construction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 (1): 83 - 89.
  • 9Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987,9(5) :698-700.
  • 10Umeyama S J. Least-squares estimation of transformation parameters between two point patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13 (4) : 376- 380.

共引文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部