期刊文献+

基于稀疏表示和自适应模型的高光谱目标检测 被引量:10

Hyperspectral Target Detection Based on Sparse Representation and Adaptive Model
原文传递
导出
摘要 影响传统高光谱目标检测精度的因素主要有两个方面:一是高光谱图像固有的光谱畸变造成的图像噪声;另一个是传统方法在处理目标检测和利用空间信息时,会将异质区域与同质区域同等对待,然而异质区域却包含着不同的物质和光谱特征。为了解决以上问题,提出了一种将空间自适应模型与稀疏表示结合起来对高光谱图像目标进行检测的方法。首先,在重建信号时利用噪声的稀疏表示特性,最大限度地提取噪声中包含的有用信息,以确保重建信号的特征更加丰富,并接近源信号;其次,提出了一种空间自适应权重模型,并用它来检测中心像素点同周围邻域不同像素的相似度,最大限度地利用空间邻域像素之间的关系。最终的实验结果表明,所提方法比传统的稀疏表示高光谱目标检测方法更具稳健性。 There exist two factors influencing the accuracy of conventional hyperspectral target detection.One is the inherent image noises induced by spectral distortion,and the other is the equal contributions of all adjacent pixels in the heterogeneous region.However,in fact the heterogeneity implies that the pixels are composed of different materials and possess different spectral characteristics.To address these problems,we propose a hyperspectral target detection method by the combination of spatially adaptive model and sparse representation.The noise sparse representation is utilized to reconstruct an accurate signal,in which the useful information in noises is extracted as possible to make the reconstructed signal be full of more features and be close to the original signal.In addition,a spatially adaptive weighted model is proposed to detect the similarity between central pixel and neighboring pixels,and to make full use of the relationship among neighboring pixels.The final experimental results show that the proposed method possesses a strong robustness compared with the conventional hyperspectral target detection methods.
作者 李非燕 霍宏涛 白杰 王巍 Li Feiyan;Huo Hongtao;Bai Jie;Wang Wei(Information Technology and Cyber Security Academy,People's Public Security University of China,Beijing 100038,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2018年第12期371-377,共7页 Acta Optica Sinica
基金 高分辨率对地观测系统重大专项(民用部分)项目(01-Y3XXXX-XX01-14/16) 国家重点研发计划(2017YFC0822405) 公安部技术研究计划(2018JSYJA01)
关键词 遥感 高光谱图像 稀疏表示 空间自适应模型 目标检测 remote sensing hyperspectral image sparse representation spatially adaptive model target detection
  • 相关文献

参考文献5

二级参考文献23

  • 1寻丽娜,方勇华,李新.高光谱图像中基于端元提取的小目标检测算法[J].光学学报,2007,27(7):1178-1182. 被引量:27
  • 2Zhao Yongqiang,Zhang Guohua,Jie Feiranet al..Unsupervisedclassification of spectropolarimetric data by region-based evidencefusion[J].IEEE Geoscience and Remote Sensing Letters,2011,8(4):755-759.
  • 3J.Wright,A.Yang,A.Ganeshet al..Robust face recognitionvia sparse representation[J].IEEE Trans.Pattern Analysis andMachine Intelligence,2009,31(2):210-227.
  • 4J.Theiler,K.Gloce.Sparse linear filters for detection andclassification in hyperspectral imagery[C].SPIE,2006,6233:623301.
  • 5Qazi Samiul Haq,Lixin Shi,Linmi Tao et al..A L1-minimization based approach for hyperspectral data classification[C].Proceedings of 2010International Conference on RemoteSensing(ICRS),2010,2:139-142.
  • 6Yi Chen,Nasser M.Nasrabadi,Trac D.Tran.Hyperspectralimage classification using dictionary-based sparse representation[J].IEEE Trans.Geoscience and Remote Sensing,2011,49(10):3973-3985.
  • 7Seung Jean Kim,K.Koh,M.Lustig et al..An interior-pointmethod for large-scale L1-regularized least squares[J].IEEE J.Sel.Top.Signal Processing,2007,1(4):606-617.
  • 8刘小刚,赵慧洁,李娜.基于多重分形谱的高光谱数据特征提取[J].光学学报,2009,29(3):844-848. 被引量:26
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 10胡正平,贾千文,许成谦.基于稀疏表示结合流形距离的超球覆盖可拒绝模式识别算法研究[J].信号处理,2010,26(4):533-538. 被引量:6

共引文献56

同被引文献121

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部